Nonfinitary Algebras and Their Automorphism Groups

被引:0
|
作者
I. N. Zotov
V. M. Levchuk
机构
[1] Siberian Federal University,
来源
关键词
nil-triangular subalgebra; nonfinitary generalizations; radical ring; associated Lie ring; adjoint group; automorphism group; local automorphism; 512.54:512.55;
D O I
暂无
中图分类号
学科分类号
摘要
Let \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$ \Gamma $\end{document} be a linearly ordered set (chain), and let \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$ K $\end{document} be an associative commutative ring with a unity. We study the module of all matrices over \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$ K $\end{document} with indices in \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$ \Gamma $\end{document} and the submodule \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$ NT({\Gamma},K) $\end{document} of all matrices with zeros on and above the main diagonal. All finitary matrices in \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$ NT({\Gamma},K) $\end{document} form a nil-ring. The automorphisms of the adjoint group (in particular, Ado’s and McLain’s groups) were already described for a ring \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$ K $\end{document} with no zero divisors. They depend on the group \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$ {\mathcal{A}}(\Gamma) $\end{document} of all automorphisms and antiautomorphisms of \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$ \Gamma $\end{document}. We show that \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$ NT({\Gamma},K) $\end{document} is an algebra with the usual matrix product iff either (a) \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$ \Gamma $\end{document} is isometric or anti-isometric to the chain of naturals and \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$ {\mathcal{A}}(\Gamma)=1 $\end{document} or (b) \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$ \Gamma $\end{document} is isometric to the chain of integers and \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$ {\mathcal{A}}(\Gamma) $\end{document} is the infinite dihedral group. Any of these algebras is radical but not a nil-ring. When \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$ K $\end{document} is a domain, we find the automorphism groups of the ring \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$ {\mathcal{R}}=NT({\Gamma},K) $\end{document} of the associated Lie ring \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$ L({\mathcal{R}}) $\end{document} and the adjoint group \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$ G({\mathcal{R}}) $\end{document} (Theorem 3). All three automorphism groups coincide in case (a). In the main case (b) the group \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$ \operatorname{Aut}{\mathcal{R}} $\end{document} has more complicated structure, and the index of each of the groups \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$ \operatorname{Aut}L({\mathcal{R}}) $\end{document} and \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$ \operatorname{Aut}G({\mathcal{R}}) $\end{document} is equal to \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$ 2 $\end{document}. As a consequence, we prove that every local automorphism of the algebras \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$ {\mathcal{R}} $\end{document} and \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$ L({\mathcal{R}}) $\end{document} is a fixed automorphism modulo \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$ {\mathcal{R}}^{2} $\end{document}.
引用
收藏
页码:87 / 96
页数:9
相关论文
共 50 条
  • [41] Cluster automorphism groups of cluster algebras with coefficients
    Wen Chang
    Bin Zhu
    [J]. Science China Mathematics, 2016, 59 : 1919 - 1936
  • [42] Automorphism groups of finite dimensional simple algebras
    Gordeev, NL
    Popov, VL
    [J]. ANNALS OF MATHEMATICS, 2003, 158 (03) : 1041 - 1065
  • [43] The discriminant controls automorphism groups of noncommutative algebras
    Ceken, S.
    Palmieri, J. H.
    Wang, Y. -H.
    Zhang, J. J.
    [J]. ADVANCES IN MATHEMATICS, 2015, 269 : 551 - 584
  • [44] AUTOMORPHISM GROUPS OF COMPLEX LIE-ALGEBRAS
    HOCHSCHI.G
    [J]. JOURNAL OF ALGEBRA, 1974, 28 (03) : 499 - 507
  • [45] AUTOMORPHISM GROUPS OF DIRECT SQUARES OF UNIVERSAL ALGEBRAS
    GOULD, MI
    [J]. NOTICES OF THE AMERICAN MATHEMATICAL SOCIETY, 1974, 21 (03): : A364 - A364
  • [46] Nonlinearity of the Automorphism Groups of Some Free Algebras
    V. A. Roman´kov
    I. V. Chirkov
    M. A. Shevelin
    [J]. Siberian Mathematical Journal, 2004, 45 : 974 - 977
  • [47] Fine gradings and automorphism groups on associative algebras
    Rodrigo-Escudero, Adrian
    [J]. LINEAR & MULTILINEAR ALGEBRA, 2022, 70 (17): : 3402 - 3418
  • [48] AUTOMORPHISM-GROUPS OF ALGEBRAS OF TRIANGULAR MATRICES
    BARKER, GP
    [J]. LINEAR ALGEBRA AND ITS APPLICATIONS, 1989, 121 : 207 - 215
  • [49] The discriminant criterion and automorphism groups of quantized algebras
    Ceken, S.
    Palmieri, J. H.
    Wang, Y. -H.
    Zhang, J. J.
    [J]. ADVANCES IN MATHEMATICS, 2016, 286 : 754 - 801
  • [50] Automorphism groups of Weyl-type algebras
    Lü, RC
    Zhao, KM
    [J]. MANUSCRIPTA MATHEMATICA, 2002, 107 (02) : 207 - 214