An enhanced genome-scale metabolic reconstruction of Streptomyces clavuligerus identifies novel strain improvement strategies

被引:0
|
作者
León Toro
Laura Pinilla
Claudio Avignone-Rossa
Rigoberto Ríos-Estepa
机构
[1] Universidad de Antioquia,Grupo de Bioprocesos, Instituto de Biología
[2] University of Surrey,Department of Microbial Sciences, School of Biosciences and Medicine
[3] Universidad de Antioquia,Grupo de Bioprocesos, Departamento de Ingeniería Química
来源
Bioprocess and Biosystems Engineering | 2018年 / 41卷
关键词
Genome-scale metabolic reconstruction; Flux balance analysis; Strain improvement; Clavulanic acid;
D O I
暂无
中图分类号
学科分类号
摘要
In this work, we expanded and updated a genome-scale metabolic model of Streptomyces clavuligerus. The model includes 1021 genes and 1494 biochemical reactions; genome-reaction information was curated and new features related to clavam metabolism and to the biomass synthesis equation were incorporated. The model was validated using experimental data from the literature and simulations were performed to predict cellular growth and clavulanic acid biosynthesis. Flux balance analysis (FBA) showed that limiting concentrations of phosphate and an excess of ammonia accumulation are unfavorable for growth and clavulanic acid biosynthesis. The evaluation of different objective functions for FBA showed that maximization of ATP yields the best predictions for cellular behavior in continuous cultures, while the maximization of growth rate provides better predictions for batch cultures. Through gene essentiality analysis, 130 essential genes were found using a limited in silico media, while 100 essential genes were identified in amino acid-supplemented media. Finally, a strain design was carried out to identify candidate genes to be overexpressed or knocked out so as to maximize antibiotic biosynthesis. Interestingly, potential metabolic engineering targets, identified in this study, have not been tested experimentally.
引用
收藏
页码:657 / 669
页数:12
相关论文
共 50 条
  • [31] Reconstruction and analysis of a genome-scale metabolic model for Scheffersomyces stipitis
    Balagurunathan, Balaji
    Jonnalagadda, Sudhakar
    Tan, Lily
    Srinivasan, Rajagopalan
    MICROBIAL CELL FACTORIES, 2012, 11
  • [32] Reconstruction and analysis of a Kluyveromyces marxianus genome-scale metabolic model
    Simonas Marcišauskas
    Boyang Ji
    Jens Nielsen
    BMC Bioinformatics, 20
  • [33] Reconstruction and analysis of genome-scale metabolic model of a photosynthetic bacterium
    Montagud, Arnau
    Navarro, Emilio
    Fernandez de Cordoba, Pedro
    Urchueguia, Javier F.
    Patil, Kiran Raosaheb
    BMC SYSTEMS BIOLOGY, 2010, 4
  • [34] Reconstruction and analysis of a genome-scale metabolic model of Nannochloropsis gaditana
    Shah, Ab Rauf
    Ahmad, Ahmad
    Srivastava, Shireesh
    Ali, B. M. Jaffar
    ALGAL RESEARCH-BIOMASS BIOFUELS AND BIOPRODUCTS, 2017, 26 : 354 - 364
  • [35] Recent advances in reconstruction and applications of genome-scale metabolic models
    Kim, Tae Yong
    Sohn, Seung Bum
    Kim, Yu Bin
    Kim, Won Jun
    Lee, Sang Yup
    CURRENT OPINION IN BIOTECHNOLOGY, 2012, 23 (04) : 617 - 623
  • [36] A systematic assessment of current genome-scale metabolic reconstruction tools
    Mendoza, Sebastian N.
    Olivier, Brett G.
    Molenaar, Douwe
    Teusink, Bas
    GENOME BIOLOGY, 2019, 20 (01)
  • [37] Reconstruction and analysis of a Kluyveromyces marxianus genome-scale metabolic model
    Marcisauskas, Simonas
    Ji, Boyang
    Nielsen, Jens
    BMC BIOINFORMATICS, 2019, 20 (01)
  • [38] Addressing uncertainty in genome-scale metabolic model reconstruction and analysis
    David B. Bernstein
    Snorre Sulheim
    Eivind Almaas
    Daniel Segrè
    Genome Biology, 22
  • [39] Reconstruction and analysis of the genome-scale metabolic network of Candida glabrata
    Xu, Nan
    Liu, Liming
    Zou, Wei
    Liu, Jie
    Hua, Qiang
    Chen, Jian
    MOLECULAR BIOSYSTEMS, 2013, 9 (02) : 205 - 216
  • [40] Reconstruction and analysis of a genome-scale metabolic model for Scheffersomyces stipitis
    Balaji Balagurunathan
    Sudhakar Jonnalagadda
    Lily Tan
    Rajagopalan Srinivasan
    Microbial Cell Factories, 11