DISTORTION METRIC FOR ROBUST 3D POINT CLOUD TRANSMISSION

被引:0
|
作者
Chen, Feng [1 ]
Cheng, Irene [1 ]
Basu, Anup [1 ]
机构
[1] Univ Alberta, Dept Comp Sci, Edmonton, AB T6G 2M7, Canada
关键词
3D Point Clouds; Progressive Transmission; Distortion Estimation; Packet Loss; Forward Error Correction;
D O I
暂无
中图分类号
TP31 [计算机软件];
学科分类号
081202 ; 0835 ;
摘要
This paper discusses using a forward error correction (FEC) algorithm to protect the transmission of progressively compressed 3D point clouds against packets loss. We design a metric to evaluate each layer's quality contribution to the decoding result of the progressively compressed model. With this metric, we minimize the expected distortion when applying an Unequal Error Protection (UEP) strategy to allocate channel bits to different layers of the model. The performance of employing UEP and Equal Error Protection (EEP) are compared with respect to the expected distortion. Experimental results show that by incorporating our distortion estimation metric with UEP, the rendering quality of a reconstructed 3D model degrades more gracefully as the packet-loss rate increases.
引用
收藏
页码:770 / 773
页数:4
相关论文
共 50 条
  • [31] Geometric 3D point cloud compression
    Morell, Vicente
    Orts, Sergio
    Cazorla, Miguel
    Garcia-Rodriguez, Jose
    [J]. PATTERN RECOGNITION LETTERS, 2014, 50 : 55 - 62
  • [32] A 3D Point Cloud Reconstruction Method
    Zhang, Yang
    Jia, Tong
    Chen, Yanqi
    Tan, Zexun
    [J]. 2019 9TH IEEE ANNUAL INTERNATIONAL CONFERENCE ON CYBER TECHNOLOGY IN AUTOMATION, CONTROL, AND INTELLIGENT SYSTEMS (IEEE-CYBER 2019), 2019, : 1310 - 1315
  • [33] Leaves Segmentation in 3D Point Cloud
    Gelard, William
    Herbulot, Ariane
    Devy, Michel
    Debaeke, Philippe
    McCormick, Ryan F.
    Truong, Sandra K.
    Mullet, John
    [J]. ADVANCED CONCEPTS FOR INTELLIGENT VISION SYSTEMS (ACIVS 2017), 2017, 10617 : 664 - 674
  • [34] 3D Point Cloud Compression: A Survey
    Cao, Chao
    Preda, Marius
    Zaharia, Titus
    [J]. PROCEEDINGS WEB3D 2019: THE 24TH INTERNATIONAL ACM CONFERENCE ON 3D WEB TECHNOLOGY, 2019,
  • [35] Guided 3D point cloud filtering
    Xian-Feng Han
    Jesse S. Jin
    Ming-Jie Wang
    Wei Jiang
    [J]. Multimedia Tools and Applications, 2018, 77 : 17397 - 17411
  • [36] Representing 3D Point Cloud Data
    Poux, Florent
    [J]. GIM INTERNATIONAL-THE WORLDWIDE MAGAZINE FOR GEOMATICS, 2022, 36 (04): : 36 - +
  • [37] Algorithm for 3D Point Cloud Denoising
    Huang Wenming
    Li Yuanwang
    Wen Peizhi
    Wu Xiaojun
    [J]. THIRD INTERNATIONAL CONFERENCE ON GENETIC AND EVOLUTIONARY COMPUTING, 2009, : 574 - +
  • [38] Equivariant Point Network for 3D Point Cloud Analysis
    Chen, Haiwei
    Liu, Shichen
    Chen, Weikai
    Li, Hao
    Hill, Randall
    [J]. 2021 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION, CVPR 2021, 2021, : 14509 - 14518
  • [39] Research on 3D Point Cloud De-Distortion Algorithm and Its Application on Euclidean Clustering
    Wen, Long
    He, Lei
    Gao, Zhenhai
    [J]. IEEE ACCESS, 2019, 7 : 86041 - 86053
  • [40] Robust watermarking algorithm based on mahalanobis distance and ISS feature point for 3D point cloud data
    Zhang, Ziyi
    Zhang, Liming
    Wang, Pengbin
    Zhang, Mingwang
    Tan, Tao
    [J]. EARTH SCIENCE INFORMATICS, 2024, 17 (01) : 783 - 796