Energy expectation values of a particle in nonstationary fields

被引:32
|
作者
Silenko, Alexander J. [1 ,2 ]
机构
[1] Belarusian State Univ, Res Inst Nucl Problems, Minsk 220030, BELARUS
[2] Joint Inst Nucl Res, Bogoliubov Lab Theoret Phys, Dubna 141980, Russia
来源
PHYSICAL REVIEW A | 2015年 / 91卷 / 01期
关键词
FOLDY-WOUTHUYSEN TRANSFORMATIONS; RELATIVISTIC-PARTICLES; DIRAC THEORY; LIMIT;
D O I
10.1103/PhysRevA.91.012111
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
We show that the origin of the nonequivalence of Hamiltonians in different representations is a change of the form of the time-derivative operator at a time-dependent unitary transformation. This nonequivalence does not lead to an ambiguity of the energy expectation values of a particle in nonstationary fields but assigns the basic representation. It has been explicitly or implicitly supposed in previous investigations that this representation is the Dirac one. We prove the alternative assertion about the basic role of the Foldy-Wouthuysen representation. We also derive the general equation for the energy expectation values in the Dirac representation. As an example, we consider a spin-1/2 particle with anomalous magnetic and electric dipole moments in strong time-dependent electromagnetic fields. We apply the obtained results to a spin-1/2 particle in a plane monochromatic electromagnetic wave and give an example of the exact Foldy-Wouthuysen transformation in the nonstationary case.
引用
收藏
页数:7
相关论文
共 50 条
  • [31] APPROXIMATION OF EXPECTATION VALUES
    HIRSCHFELDER, JO
    SANDERS, WA
    JOURNAL OF CHEMICAL PHYSICS, 1965, 43 (10): : S204 - +
  • [32] Gauge-invariant expectation values of the energy of a molecule in an electromagnetic field
    Mandal, Anirban
    Hunt, Katharine L. C.
    JOURNAL OF CHEMICAL PHYSICS, 2016, 144 (04):
  • [33] Measurement of Velocity Fields of Nonstationary Air Vortices by Anemometry Using Particle Images
    A. A. Mochalov
    A. Yu. Varaksin
    A. N. Arbekov
    Measurement Techniques, 2019, 62 : 242 - 248
  • [34] VACUUM EXPECTATION VALUES OF THE ENERGY-MOMENTUM TENSOR IN 2 DIMENSIONS
    BIERNACKI, W
    KROLAK, A
    INTERNATIONAL JOURNAL OF THEORETICAL PHYSICS, 1986, 25 (11) : 1175 - 1179
  • [35] ROVIBRATIONAL ENERGY-LEVELS AND EXPECTATION VALUES FOR PERTURBED KRATZER OSCILLATORS
    REQUENA, A
    ZUNIGA, J
    FUENTES, LM
    HIDALGO, A
    JOURNAL OF CHEMICAL PHYSICS, 1986, 85 (07): : 3939 - 3944
  • [36] Measurement of Velocity Fields of Nonstationary Air Vortices by Anemometry Using Particle Images
    Mochalov, A. A.
    Varaksin, A. Yu
    Arbekov, A. N.
    MEASUREMENT TECHNIQUES, 2019, 62 (03) : 242 - 248
  • [37] Expectation, conditional expectation and martingales in local fields
    Evans, Steven N.
    Lidman, Tye
    ELECTRONIC JOURNAL OF PROBABILITY, 2007, 12 : 498 - 515
  • [38] Perturbative test of exact vacuum expectation values of local fields in affine Toda theories
    Ahn, C
    Baseilhac, P
    Kim, C
    Rim, C
    PHYSICAL REVIEW D, 2001, 64 (04):
  • [39] CLOSED EQUATIONS OF MOTION FOR ONE-PARTICLE AND 2-PARTICLE EXPECTATION VALUES IN THE CASE OF SPONTANEOUS EMISSION
    SEKE, J
    ADAM, G
    HITTMAIR, O
    LETTERE AL NUOVO CIMENTO, 1985, 44 (06): : 410 - 416
  • [40] VARIATIONAL PRINCIPLES FOR SINGLE-PARTICLE EXPECTATION VALUES IN HARTREE-FOCK APPROXIMATION
    SAHNI, V
    KRIEGER, JB
    PHYSICAL REVIEW A, 1973, 8 (01): : 65 - 76