A comparative study of the use of large margin classifiers on seismic data

被引:0
|
作者
Drosou, Krystallenia [1 ]
Artemiou, Andreas [2 ]
Koukouvinos, Christos [1 ]
机构
[1] Natl Tech Univ Athens, Dept Math, GR-15773 Athens, Greece
[2] Cardiff Univ, Sch Math, Cardiff CF24 4AG, S Glam, Wales
关键词
reweighted methods; real-time problems; proximal SVM; SVM; large-scale classification; incremental procedure; SUPPORT VECTOR MACHINES;
D O I
10.1080/02664763.2014.938619
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
In this work we present a study on the analysis of a large data set from seismology. A set of different large margin classifiers based on the well-known support vector machine (SVM) algorithm is used to classify the data into two classes based on their magnitude on the Richter scale. Due to the imbalance of nature between the two classes reweighing techniques are used to show the importance of reweighing algorithms. Moreover, we present an incremental algorithm to explore the possibility of predicting the strength of an earthquake with incremental techniques.
引用
收藏
页码:180 / 201
页数:22
相关论文
共 50 条
  • [41] Learning similarity with operator-valued large-margin classifiers
    Maurer, Andreas
    [J]. JOURNAL OF MACHINE LEARNING RESEARCH, 2008, 9 : 1049 - 1082
  • [42] A family of large margin linear classifiers and its application in dynamic environments
    Shen, Jianqiang
    Dietterich, Thomas G.
    [J]. Statistical Analysis and Data Mining, 2009, 2 (5-6): : 328 - 345
  • [43] A comparative study of motor imagery based BCI classifiers on EEG and iEEG data
    Nagabushan, Naresh
    Fisher, Taber
    Malaty, Giovanni
    Witcher, Mark
    Vijayan, Sujith
    [J]. 2019 7TH IEEE GLOBAL CONFERENCE ON SIGNAL AND INFORMATION PROCESSING (IEEE GLOBALSIP), 2019,
  • [44] Augmenting Classifiers Performance through Clustering: A Comparative Study on Road Accident Data
    Kumar, Sachin
    Tiwari, Prayag
    Denis, Kalitin Vladimirovich
    [J]. INTERNATIONAL JOURNAL OF INFORMATION RETRIEVAL RESEARCH, 2018, 8 (01) : 57 - 68
  • [45] State-of-the-art Machine Learning Classifiers: A Comparative Study on health data
    Maqsood, Sadia
    Malik, Muhammad Sheraz Arshad
    [J]. INTERNATIONAL JOURNAL OF COMPUTER SCIENCE AND NETWORK SECURITY, 2019, 19 (09): : 96 - 102
  • [46] Correlations of random classifiers on large data sets
    Kurkova, Vera
    Sanguineti, Marcello
    [J]. SOFT COMPUTING, 2021, 25 (19) : 12641 - 12648
  • [47] Effective Active Learning Strategies for the Use of Large-Margin Classifiers in Semantic Annotation: An Optimal Parameter Discovery Perspective
    Xu, Kaiquan
    Liao, Stephen Shaoyi
    Lau, Raymond Y. K.
    Zhao, J. Leon
    [J]. INFORMS JOURNAL ON COMPUTING, 2014, 26 (03) : 461 - 483
  • [48] The convergence of linear classifiers on large sparse data
    Li, Xiang
    Wang, Huaimin
    Gu, Bin
    Ling, Charles X.
    [J]. NEUROCOMPUTING, 2018, 273 : 622 - 633
  • [49] Correlations of random classifiers on large data sets
    Věra Kůrková
    Marcello Sanguineti
    [J]. Soft Computing, 2021, 25 : 12641 - 12648
  • [50] Boosting RVM classifiers for large data sets
    Silva, Catarina
    Ribeir, Bernardete
    Sung, Andrew H.
    [J]. ADAPTIVE AND NATURAL COMPUTING ALGORITHMS, PT 2, 2007, 4432 : 228 - +