A comparative study of the use of large margin classifiers on seismic data

被引:0
|
作者
Drosou, Krystallenia [1 ]
Artemiou, Andreas [2 ]
Koukouvinos, Christos [1 ]
机构
[1] Natl Tech Univ Athens, Dept Math, GR-15773 Athens, Greece
[2] Cardiff Univ, Sch Math, Cardiff CF24 4AG, S Glam, Wales
关键词
reweighted methods; real-time problems; proximal SVM; SVM; large-scale classification; incremental procedure; SUPPORT VECTOR MACHINES;
D O I
10.1080/02664763.2014.938619
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
In this work we present a study on the analysis of a large data set from seismology. A set of different large margin classifiers based on the well-known support vector machine (SVM) algorithm is used to classify the data into two classes based on their magnitude on the Richter scale. Due to the imbalance of nature between the two classes reweighing techniques are used to show the importance of reweighing algorithms. Moreover, we present an incremental algorithm to explore the possibility of predicting the strength of an earthquake with incremental techniques.
引用
收藏
页码:180 / 201
页数:22
相关论文
共 50 条
  • [1] A comparative study on the use of labeled and unlabeled data for large margin classifiers
    Takamura, H
    Okumura, M
    [J]. NATURAL LANGUAGE PROCESSING - IJCNLP 2004, 2005, 3248 : 456 - 465
  • [2] Large margin classifiers to generate synthetic data for imbalanced datasets
    Ladeira Marques, Marcelo
    Moraes Villela, Saulo
    Hasenclever Borges, Carlos Cristiano
    [J]. APPLIED INTELLIGENCE, 2020, 50 (11) : 3678 - 3694
  • [3] Large margin classifiers to generate synthetic data for imbalanced datasets
    Marcelo Ladeira Marques
    Saulo Moraes Villela
    Carlos Cristiano Hasenclever Borges
    [J]. Applied Intelligence, 2020, 50 : 3678 - 3694
  • [4] Incremental margin algorithm for large margin classifiers
    Leite, Saul C.
    Neto, Raul Fonseca
    [J]. NEUROCOMPUTING, 2008, 71 (7-9) : 1550 - 1560
  • [5] Composite large margin classifiers with latent subclasses for heterogeneous biomedical data
    Chen, Guanhua
    Liu, Yufeng
    Shen, Dinggang
    Kosorok, Michael R.
    [J]. STATISTICAL ANALYSIS AND DATA MINING, 2016, 9 (02) : 75 - 88
  • [6] A comparative study of multi-class support vector machines in the unifying framework of large margin classifiers
    Guermeur, Y
    Elisseeff, A
    Zelus, D
    [J]. APPLIED STOCHASTIC MODELS IN BUSINESS AND INDUSTRY, 2005, 21 (02) : 199 - 214
  • [7] Adaptively Weighted Large Margin Classifiers
    Wu, Yichao
    Liu, Yufeng
    [J]. JOURNAL OF COMPUTATIONAL AND GRAPHICAL STATISTICS, 2013, 22 (02) : 416 - 432
  • [8] Multiplicative updates for large margin classifiers
    Sha, F
    Saul, LK
    Lee, DD
    [J]. LEARNING THEORY AND KERNEL MACHINES, 2003, 2777 : 188 - 202
  • [9] Convex Bidirectional Large Margin Classifiers
    Qi, Zhengling
    Liu, Yufeng
    [J]. TECHNOMETRICS, 2019, 61 (02) : 176 - 186
  • [10] Large margin nearest neighbor classifiers
    Domeniconi, C
    Gunopulos, D
    Peng, J
    [J]. IEEE TRANSACTIONS ON NEURAL NETWORKS, 2005, 16 (04): : 899 - 909