On the nonexistence and rigidity for hypersurfaces of the homogeneous nearly Kahler S3 x S3

被引:9
|
作者
Hu, Zejun [1 ]
Moruz, Marilena [2 ]
Vrancken, Luc [3 ,4 ]
Yao, Zeke [1 ]
机构
[1] Zhengzhou Univ, Sch Math & Stat, Zhengzhou 450001, Peoples R China
[2] Alexandru Ioan Cuza Univ, Fac Math, Bd Carol I 11, Iasi 700506, Romania
[3] Katholieke Univ Leuven, Dept Math, Celestijnenlaan 200B,Box 2400, BE-3001 Leuven, Belgium
[4] Univ Polytech Hauts de France, LMI Lab Math Ingn, F-59313 Valenciennes, France
关键词
Nearly Kahler S-3 x S-3; Conformally flat hypersurface; Einstein hypersurface; Hopf hypersurface; Simons type integral inequality; REAL MINIMAL HYPERSURFACES; LAGRANGIAN SUBMANIFOLDS; MANIFOLDS; SURFACES;
D O I
10.1016/j.difgeo.2021.101717
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we study hypersurfaces of the homogeneous NK (nearly Kahler) manifold S-3 x S-3. As the main results, we first show that the homogeneous NK S-3 x S-3 admits neither locally conformally flat hypersurfaces nor Einstein Hopf hypersurfaces. Then, we establish a Simons type integral inequality for compact minimal hypersurfaces of the homogeneous NK S-3 x S-3 and, as its direct consequence, we obtain new characterizations for hypersurfaces of the homogeneous NK S-3 x S-3 whose shape operator A and induced almost contact structure phi satisfy A phi = phi A. Hypersurfaces of the NK S-3 x S-3 satisfying this latter condition have been classified in our previous joint work (Hu et al. 2018 [18]). (C) 2021 Elsevier B.V. All rights reserved.
引用
收藏
页数:22
相关论文
共 50 条
  • [31] RIGIDITY OF THE CLIFFORD TORI IN S3
    KITAGAWA, Y
    MATHEMATISCHE ZEITSCHRIFT, 1988, 198 (04) : 591 - 599
  • [32] WHEN AN S3 IS NOT AN S3
    Bachour, Kinan
    Mendez, Eric
    Jackson, Samuel B.
    Lluri, Gentian
    Honda, Henry M.
    JOURNAL OF THE AMERICAN COLLEGE OF CARDIOLOGY, 2023, 81 (08) : 3920 - 3920
  • [33] Strings on AdS3 x S3 x S3 x S1
    Eberhardt, Lorenz
    Gaberdiel, Matthias R.
    JOURNAL OF HIGH ENERGY PHYSICS, 2019, 2019 (06)
  • [34] Half-flat structures on S3 x S3
    Madsen, Thomas Bruun
    Salamon, Simon
    ANNALS OF GLOBAL ANALYSIS AND GEOMETRY, 2013, 44 (04) : 369 - 390
  • [35] NONEXISTENCE OF SOME HYPERBOLIC SETS IN S3
    GIBBONS, J
    NOTICES OF THE AMERICAN MATHEMATICAL SOCIETY, 1973, 20 (02): : A289 - A289
  • [36] The AdS3 x S3 x S3 x S1 worldsheet S matrix
    Borsato, Riccardo
    Sax, Olof Ohlsson
    Sfondrini, Alessandro
    Stefanski, Bogdan, Jr.
    JOURNAL OF PHYSICS A-MATHEMATICAL AND THEORETICAL, 2015, 48 (41)
  • [37] The holographic dual of AdS3 x S3 x S3 x S1
    Tong, David
    JOURNAL OF HIGH ENERGY PHYSICS, 2014, (04):
  • [38] On the Jacobi group and the mapping class group of S3 x S3
    Krylov, NA
    TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 2003, 355 (01) : 99 - 117
  • [39] 8-dimensional manifolds with S3 x S3 actions
    Mazaud, P
    TOPOLOGY AND ITS APPLICATIONS, 2001, 115 (01) : 63 - 95
  • [40] Left-invariant Einstein metrics on S3 x S3
    Belgun, Florin
    Cortes, Vicente
    Haupt, Alexander S.
    Lindemann, David
    JOURNAL OF GEOMETRY AND PHYSICS, 2018, 128 : 128 - 139