Quantifier elimination for counting extensions of Presburger arithmetic

被引:1
|
作者
Chistikov, Dmitry [1 ,2 ]
Haase, Christoph [3 ]
Mansutti, Alessio [3 ]
机构
[1] Univ Warwick, Ctr Discrete Math & Its Applicat DIMAP, Coventry, W Midlands, England
[2] Univ Warwick, Dept Comp Sci, Coventry, W Midlands, England
[3] Univ Oxford, Dept Comp Sci, Oxford, England
来源
FOUNDATIONS OF SOFTWARE SCIENCE AND COMPUTATION STRUCTURES (FOSSACS 2022) | 2022年 / 13242卷
基金
欧洲研究理事会;
关键词
COMPLEXITY;
D O I
10.1007/978-3-030-99253-8_12
中图分类号
TP31 [计算机软件];
学科分类号
081202 ; 0835 ;
摘要
We give a new quantifier elimination procedure for Presburger arithmetic extended with a unary counting quantifier there exists=x(y) Phi that binds to the variable x the number of different y satisfying Phi. While our procedure runs in non-elementary time in general, we show that it yields nearly optimal elementary complexity results for expressive counting extensions of Presburger arithmetic, such as the threshold counting quantifier there exists(>= c)y Phi that requires that the number of different y satisfying Phi be at least c is an element of N, where c can succinctly be defined by a Presburger formula. Our results are cast in terms of what we call the monadically-guarded fragment of Presburger arithmetic with unary counting quantifiers, for which we develop a 2ExPSPAcE decision procedure.
引用
收藏
页码:225 / 243
页数:19
相关论文
共 50 条
  • [41] On Interpretations of Presburger Arithmetic in Buchi Arithmetics
    Zapryagaev, A. A.
    DOKLADY MATHEMATICS, 2023, 107 (02) : 89 - 92
  • [42] Expansions of Presburger arithmetic with the exchange property
    Mariaule, Nathanael
    MATHEMATICAL LOGIC QUARTERLY, 2021, 67 (04) : 409 - 419
  • [43] Bounds on the automata size for Presburger arithmetic
    Klaedtke, Felix
    ACM TRANSACTIONS ON COMPUTATIONAL LOGIC, 2008, 9 (02)
  • [44] Succinct Population Protocols for Presburger Arithmetic
    Blondin, Michael
    Esparza, Javier
    Genest, Blaise
    Helfrich, Martin
    Jaax, Stefan
    37TH INTERNATIONAL SYMPOSIUM ON THEORETICAL ASPECTS OF COMPUTER SCIENCE (STACS 2020), 2020, 154
  • [45] On solving Presburger and linear arithmetic with SAT
    Strichman, O
    FORMAL METHODS IN COMPUTER-AIDED DESIGN, PROCEEDINGS, 2002, 2517 : 160 - 170
  • [46] A characterisation of the relations definable in presburger arithmetic
    Barra, Mathias
    THEORY AND APPLICATIONS OF MODELS OF COMPUTATION, PROCEEDINGS, 2008, 4978 : 258 - 269
  • [47] Simultaneous quantifier elimination
    Autexier, S
    Mantel, H
    Stephan, W
    KI-98: ADVANCES IN ARTIFICIAL INTELLIGENCE, 1998, 1504 : 141 - 152
  • [48] Linear Quantifier Elimination
    Tobias Nipkow
    Journal of Automated Reasoning, 2010, 45 : 189 - 212
  • [49] Bounding quantification in parametric expansions of Presburger arithmetic
    Goodrick, John
    ARCHIVE FOR MATHEMATICAL LOGIC, 2018, 57 (5-6) : 577 - 591
  • [50] Linear quantifier elimination
    Nipkow, Tobias
    AUTOMATED REASONING, PROCEEDINGS, 2008, 5195 : 18 - 33