A note on maximum independent set and related problems on box graphs

被引:3
|
作者
Lingas, A [1 ]
Wahlen, M [1 ]
机构
[1] Lund Univ, Dept Comp Sci, S-22100 Lund, Sweden
关键词
algorithms; analysis of algorithms; complexity;
D O I
10.1016/j.ipl.2004.10.013
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
A box graph is the intersection graph of orthogonal rectangles in the plane. We show that maximum independent set and minimum vertex cover on box graphs can be solved in subexponential time, more precisely, in time 2(O(rootn log n)), by applying Miller's simple cycle planar separator theorem [J. Comput. System Sci. 32 (1986) 265-279] (in spite of the fact that the input box graph might be strongly non-planar). (C) 2004 Elsevier B.V. All rights reserved.
引用
收藏
页码:169 / 171
页数:3
相关论文
共 50 条
  • [21] The Maximum Independent Set Problem in Subclasses of Subcubic Graphs
    Brause, Christoph
    Ngoc Chi Le
    Schiermeyer, Ingo
    DISCRETE MATHEMATICS, 2015, 338 (10) : 1766 - 1778
  • [22] Dynamic Approximate Maximum Independent Set on Massive Graphs
    Gao, Xiangyu
    Li, Jianzhong
    Miao, Dongjing
    2022 IEEE 38TH INTERNATIONAL CONFERENCE ON DATA ENGINEERING (ICDE 2022), 2022, : 1835 - 1847
  • [23] Parallel maximum independent set in convex bipartite graphs
    Czumaj, A
    Diks, K
    Przytycka, TM
    INFORMATION PROCESSING LETTERS, 1996, 59 (06) : 289 - 294
  • [24] A note on maximum independent sets in rectangle intersection graphs
    Chan, TM
    INFORMATION PROCESSING LETTERS, 2004, 89 (01) : 19 - 23
  • [25] A genetic algorithm for maximum independent set problems
    Liu, XZ
    Sakamoto, A
    Shimamoto, T
    INFORMATION INTELLIGENCE AND SYSTEMS, VOLS 1-4, 1996, : 1916 - 1921
  • [26] A genetic approach for maximum independent set problems
    Sakamoto, A
    Liu, XZ
    Shimamoto, T
    IEICE TRANSACTIONS ON FUNDAMENTALS OF ELECTRONICS COMMUNICATIONS AND COMPUTER SCIENCES, 1997, E80A (03) : 551 - 556
  • [27] Independent sets of maximum weight beyond claw-free graphs and related problems
    Brandstaedt, Andreas
    Lozin, Vadim
    Mosca, Raffaele
    THEORETICAL COMPUTER SCIENCE, 2025, 1032
  • [28] Advice Complexity of Maximum Independent set in Sparse and Bipartite Graphs
    Stefan Dobrev
    Rastislav Královič
    Richard Královič
    Theory of Computing Systems, 2015, 56 : 197 - 219
  • [29] Maximum Independent Set on B1-VPG Graphs
    Lahiri, Abhiruk
    Mukherjee, Joydeep
    Subramanian, C. R.
    COMBINATORIAL OPTIMIZATION AND APPLICATIONS, (COCOA 2015), 2015, 9486 : 633 - 646
  • [30] Maximum Independent Set in 2-Direction Outersegment Graphs
    Flier, Holger
    Mihalak, Matus
    Widmayer, Peter
    Zych, Anna
    GRAPH-THEORETIC CONCEPTS IN COMPUTER SCIENCE, 2011, 6986 : 155 - 166