A self-stabilizing distributed algorithm for the local (1,|Ni|)-critical section problem

被引:2
|
作者
Kamei, Sayaka [1 ]
Kakugawa, Hirotsugu [2 ]
机构
[1] Hiroshima Univ, Grad Sch Engn, Dept Informat Engn, 1-4-1 Kagamiyama, Higashihiroshima 7398527, Japan
[2] Ryukoku Univ, Dept Appl Math & Informat, Kyoto, Japan
来源
基金
日本科学技术振兴机构;
关键词
disjoint minimal dominating sets; domatic partition; mutual exclusion; mutual inclusion; self-stabilization; MUTUAL EXCLUSION; UNIFORM;
D O I
10.1002/cpe.5628
中图分类号
TP31 [计算机软件];
学科分类号
081202 ; 0835 ;
摘要
We consider the local (1,|N-i|)-critical section (CS) problem where N-i is the set of neighboring processes for each process P-i. It dynamically maintains two disjoint dominating sets and is one of the generalizations of the mutual exclusion problem. The problem is one of controlling the system in such a way that, for each process, among its neighbors and itself, at least one process must be in the CS and at least one process must be out of the CS at each time. That is, in the system G=(V,E), there are always two disjoint dominating sets A(1)(subset of V) and A(2)(=V\A(1)) and each process alternates between its rule A(1) and A(2) infinitely. It is useful for sleep scheduling or cluster head scheduling in sensor networks. In this paper, first, we show the necessary and sufficient conditions to solve the problem without any deadlock detection. To discuss the conditions, we consider an inefficient (costly) self-stabilizing algorithm for the local (1,|N-i|)-CS problem. After that, an efficient self-stabilizing algorithm for the local (1,|N-i|)-CS problem is proposed under an additional assumption that the graph does not have a special matching, which we call unpreventable colorable maximal matching. The convergence time of the proposed algorithm is O(n) rounds under the weakly fair distributed daemon.
引用
收藏
页数:21
相关论文
共 50 条
  • [41] Self-Stabilizing Distributed Cooperative Reset
    Devismes, Stephane
    Johnen, Colette
    2019 39TH IEEE INTERNATIONAL CONFERENCE ON DISTRIBUTED COMPUTING SYSTEMS (ICDCS 2019), 2019, : 379 - 389
  • [42] Self-stabilizing distributed file system
    Dolev, S
    Kat, RI
    JOURNAL OF HIGH SPEED NETWORKS, 2005, 14 (02) : 135 - 153
  • [43] A self-stabilizing approximation algorithm for the distributed minimum k-domination
    Kamei, S
    Kakugawa, H
    IEICE TRANSACTIONS ON FUNDAMENTALS OF ELECTRONICS COMMUNICATIONS AND COMPUTER SCIENCES, 2005, E88A (05): : 1109 - 1116
  • [44] A SELF-STABILIZING DISTRIBUTED APPROXIMATION ALGORITHM FOR THE MINIMUM CONNECTED DOMINATING SET
    Kamei, Sayaka
    Kakugawa, Hirotsugu
    INTERNATIONAL JOURNAL OF FOUNDATIONS OF COMPUTER SCIENCE, 2010, 21 (03) : 459 - 476
  • [45] A self-stabilizing distributed algorithm for edge-coloring general graphs
    Chaudhuri, Pranay
    Thompson, Hussein
    AUSTRALASIAN JOURNAL OF COMBINATORICS, 2007, 38 : 237 - 247
  • [46] A self-stabilizing algorithm for the distributed minimal k-redundant dominating set problem in tree networks
    Kamei, S
    Kakugawa, H
    PARALLEL AND DISTRIBUTED COMPUTING, APPLICATIONS AND TECHNOLOGIES, PDCAT'2003, PROCEEDINGS, 2003, : 720 - 724
  • [47] A distributed self-stabilizing algorithm for finding a connected dominating set in a graph
    Jain, A
    Gupta, A
    PDCAT 2005: Sixth International Conference on Parallel and Distributed Computing, Applications and Technologies, Proceedings, 2005, : 615 - 619
  • [48] A quorum-based self-stabilizing distributed mutual exclusion algorithm
    Nesterenko, M
    Mizuno, M
    JOURNAL OF PARALLEL AND DISTRIBUTED COMPUTING, 2002, 62 (02) : 284 - 305
  • [49] A self-stabilizing algorithm for strong fairness
    Karaata, MH
    Chaudhuri, P
    COMPUTING, 1998, 60 (03) : 217 - 228
  • [50] A self-stabilizing weighted matching algorithm
    Manne, Fredrik
    Mjelde, Morten
    STABILIZATION, SAFETY, AND SECURITY OF DISTRIBUTED SYSTEMS, PROCEEDINGS, 2007, 4838 : 383 - +