A data-driven Bayesian network learning method for process fault diagnosis

被引:155
|
作者
Amin, Md Tanjin [1 ]
Khan, Faisal [1 ]
Ahmed, Salim [1 ]
Imtiaz, Syed [1 ]
机构
[1] Mem Univ, Fac Engn & Appl Sci, Ctr Risk Integr & Safety Engn C RISE, St John, NF A1B 3X5, Canada
基金
加拿大自然科学与工程研究理事会;
关键词
Process monitoring; Fault diagnosis; Process safety; Correlation dimension; Vine copula; Bayesian network; SYSTEMS; MODEL; IDENTIFICATION;
D O I
10.1016/j.psep.2021.04.004
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
This paper presents a data-driven methodology for fault detection and diagnosis (FDD) by integrating the principal component analysis (PCA) with the Bayesian network (BN). Though the integration of PCA-BN for FDD purposes has been studied in the past, the present work makes two contributions for process systems. First, the application of correlation dimension (CD) to select principal components (PCs) automatically. Second, the use of Kullback-Leibler divergence (KLD) and copula theory to develop a data-based BN learning technique. The proposed method uses a combination of vine copula and Bayes' theorem (BT) to capture nonlinear dependence of high-dimensional process data which eliminates the need for discretization of continuous data. The data-driven integrated PCA-BN framework has been applied to two processing systems. Performance of the proposed methodology is compared with the independent component analysis (ICA), kernel principal component analysis (KPCA), kernel independent component analysis (KICA), and their integrated frameworks with the BN. The comparative study suggests that the proposed framework provides superior performance. (c) 2021 Institution of Chemical Engineers. Published by Elsevier B.V. All rights reserved.
引用
收藏
页码:110 / 122
页数:13
相关论文
共 50 条
  • [21] A Data-Driven Bayesian Koopman Learning Method for Modeling Hysteresis Dynamics
    Huang, Xiang
    Zhang, Hai-Tao
    Wang, Jun
    IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS, 2024, 35 (11) : 15615 - 15623
  • [22] An adaptive data-driven fault detection method for monitoring dynamic process
    Chen, Zhiwen
    Peng, Tao
    Yang, Chunhua
    Li, Fanbiao
    He, Zhangming
    IECON 2018 - 44TH ANNUAL CONFERENCE OF THE IEEE INDUSTRIAL ELECTRONICS SOCIETY, 2018, : 5353 - 5358
  • [23] Data-Driven Fault Prognosis Based on Incomplete Time Slice Dynamic Bayesian Network
    Zhang, Zhengdao
    Dong, Feilong
    Xie, Linbo
    IFAC PAPERSONLINE, 2018, 51 (18): : 239 - 244
  • [24] A Data-Driven Clustering Approach for Fault Diagnosis
    Hou, Jian
    Xiao, Bing
    IEEE ACCESS, 2017, 5 : 26512 - 26520
  • [25] Data-driven Method in Detecting CAN Network Intermittent Connection Fault
    Zou, Jing
    Chang, Qing
    Zhang, Leiming
    Lei, Yong
    IFAC PAPERSONLINE, 2016, 49 (12): : 1591 - 1595
  • [26] Fault Diagnosis of Turbine Based on Data-Driven
    Liao, Wei
    Li, Feng
    Han, Pu
    ICICTA: 2009 SECOND INTERNATIONAL CONFERENCE ON INTELLIGENT COMPUTATION TECHNOLOGY AND AUTOMATION, VOL II, PROCEEDINGS, 2009, : 499 - +
  • [27] Data-Driven Adaptive Observer for Fault Diagnosis
    Yin, Shen
    Yang, Xuebo
    Karimi, Hamid Reza
    MATHEMATICAL PROBLEMS IN ENGINEERING, 2012, 2012
  • [28] A New Data-Driven Intelligent Fault Diagnosis by Using Convolutional Neural Network
    Wen, Long
    Gao, Liang
    Li, Xinyu
    Xie, Minzhao
    Li, Guomin
    2017 IEEE INTERNATIONAL CONFERENCE ON INDUSTRIAL ENGINEERING AND ENGINEERING MANAGEMENT (IEEM), 2017, : 813 - 817
  • [29] Data-driven Fault Diagnosis of Induction Motors Using a Stacked Autoencoder Network
    Skylvik, Audun Johannessen
    Robbersmyr, Kjell G.
    Van Khang, Huynh
    2019 22ND INTERNATIONAL CONFERENCE ON ELECTRICAL MACHINES AND SYSTEMS (ICEMS 2019), 2019, : 5698 - 5703
  • [30] Data-driven exploratory models of an electric distribution network for fault prediction and diagnosis
    Renga, Daniela
    Apiletti, Daniele
    Giordano, Danilo
    Nisi, Matteo
    Huang, Tao
    Zhang, Yang
    Mellia, Marco
    Baralis, Elena
    COMPUTING, 2020, 102 (05) : 1199 - 1211