Modelling of dynamic recrystallisation of 316L stainless steel using a systems approach

被引:1
|
作者
Abbod, M. F. [1 ]
Mahfouf, M. [1 ]
Linkens, D. A. [1 ]
Sellars, C. M. [2 ]
机构
[1] Univ Sheffield, Inst Microstruct & Mech Proc Engn, Sheffield S10 2TN, S Yorkshire, England
[2] Univ Sheffield, Dept Mat Engn, Sheffield, S Yorkshire, England
来源
THERMEC 2006, PTS 1-5 | 2007年 / 539-543卷
基金
英国工程与自然科学研究理事会;
关键词
316L stainless steel; dynamic recrystallisation; constitutive equation; Modelling; prediction;
D O I
10.4028/www.scientific.net/MSF.539-543.2455
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
Dynamic recrystallisation (DRX) is an important aspect for industrial applications in hot metal working. Although DRX has been known for more than thirty years, its mechanisms have never been precisely investigated, in part because it was not readily possible to make local texture measurements. In the present work, the material behaviour during DRX is investigated and modelled based on the microstructure of 316L stainless steel. The developed model is based on a constitutive equation Modelling technique which incorporates the strain, strain rate and instantaneous temperature for predicting the flow stress of material being deformed under hot conditions.
引用
收藏
页码:2455 / +
页数:2
相关论文
共 50 条
  • [21] Dry Sliding Wear Behaviour of Stainless Steel (316L) using Response Surface Approach
    Suresh K.
    Manikandan S.
    Sivaprakasam P.
    [J]. International Journal of Vehicle Structures and Systems, 2024, 16 (01) : 24 - 29
  • [22] An integrated approach to the modelling of hydrogen assisted failure in 316L steel
    Toribio, J
    Cortes, R
    Caballero, L
    Valiente, A
    [J]. FUSION ENGINEERING AND DESIGN, 1998, 41 : 91 - 96
  • [23] Effect of Initial Surface Scratches on the Cavitation Erosion Behavior of 316L Stainless Steel Substrates and 316L Stainless Steel Coatings
    Lu, Pengfei
    Xu, Ziqi
    Tian, Ye
    Yang, Rui
    Hu, Kaixin
    Li, Hua
    Yin, Yanhong
    Chen, Xiuyong
    [J]. MATERIALS, 2023, 16 (04)
  • [24] Experiments and numerical modelling of solid state sintering for 316L stainless steel components
    Song, J.
    Gelin, J. C.
    Barriere, T.
    Liu, B.
    [J]. JOURNAL OF MATERIALS PROCESSING TECHNOLOGY, 2006, 177 (1-3) : 352 - 355
  • [25] Cavitation Erosion Behavior of 316L Stainless Steel
    Guiyan Gao
    Zheng Zhang
    [J]. Tribology Letters, 2019, 67
  • [26] PECVD of biocompatible coatings on 316L stainless steel
    Prasad, GR
    Daniels, S
    Cameron, DC
    McNamara, BP
    Tully, E
    O'Kennedy, R
    [J]. SURFACE & COATINGS TECHNOLOGY, 2005, 200 (1-4): : 1031 - 1035
  • [27] Injection molding of 316L stainless steel microstructures
    Z. Y. Liu
    N. H. Loh
    S. B. Tor
    Y. Murakoshi
    R. Maeda
    K. A. Khor
    T. Shimidzu
    [J]. Microsystem Technologies, 2003, 9 : 507 - 510
  • [28] 3D modelling of multipass welding of a 316L stainless steel pipe
    Duranton, P
    Devaux, J
    Robin, V
    Gilles, P
    Bergheau, JM
    [J]. JOURNAL OF MATERIALS PROCESSING TECHNOLOGY, 2004, 153 : 457 - 463
  • [29] Electropolishing of 316L stainless steel for anticorrosion passivation
    Hocheng, H
    Kao, PS
    Chen, YF
    [J]. JOURNAL OF MATERIALS ENGINEERING AND PERFORMANCE, 2001, 10 (04) : 414 - 418
  • [30] Mixing and Characterisation of stainless steel 316L feedstock
    X. Kong
    C. Quinard
    T. Barrière
    J. C. Gelin
    [J]. International Journal of Material Forming, 2009, 2