Modelling of dynamic recrystallisation of 316L stainless steel using a systems approach

被引:1
|
作者
Abbod, M. F. [1 ]
Mahfouf, M. [1 ]
Linkens, D. A. [1 ]
Sellars, C. M. [2 ]
机构
[1] Univ Sheffield, Inst Microstruct & Mech Proc Engn, Sheffield S10 2TN, S Yorkshire, England
[2] Univ Sheffield, Dept Mat Engn, Sheffield, S Yorkshire, England
来源
THERMEC 2006, PTS 1-5 | 2007年 / 539-543卷
基金
英国工程与自然科学研究理事会;
关键词
316L stainless steel; dynamic recrystallisation; constitutive equation; Modelling; prediction;
D O I
10.4028/www.scientific.net/MSF.539-543.2455
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
Dynamic recrystallisation (DRX) is an important aspect for industrial applications in hot metal working. Although DRX has been known for more than thirty years, its mechanisms have never been precisely investigated, in part because it was not readily possible to make local texture measurements. In the present work, the material behaviour during DRX is investigated and modelled based on the microstructure of 316L stainless steel. The developed model is based on a constitutive equation Modelling technique which incorporates the strain, strain rate and instantaneous temperature for predicting the flow stress of material being deformed under hot conditions.
引用
收藏
页码:2455 / +
页数:2
相关论文
共 50 条
  • [1] On the interactions between strain path reversal and dynamic recrystallisation in 316L stainless steel studied by hot torsion
    Sun, L.
    Muszka, K.
    Wynne, B. P.
    Palmiere, E. J.
    [J]. MATERIALS SCIENCE AND ENGINEERING A-STRUCTURAL MATERIALS PROPERTIES MICROSTRUCTURE AND PROCESSING, 2013, 568 : 160 - 170
  • [2] Gelcasting of 316L stainless steel
    Li, Yan
    Guo, Zhimeng
    Hao, Junjie
    [J]. JOURNAL OF UNIVERSITY OF SCIENCE AND TECHNOLOGY BEIJING, 2007, 14 (06): : 507 - 511
  • [3] Gelcasting of 316L stainless steel
    Yan Li
    [J]. International Journal of Minerals,Metallurgy and Materials, 2007, (06) : 507 - 511
  • [4] Mechanical modelling of hydrogen embrittlement in 316L austenitic stainless steel
    Toribio, J.
    Valiente, A.
    Cortes, R.
    Caballero, L.
    [J]. Informacion Tecnologica, 1996, 7 (04): : 93 - 96
  • [5] Modelling of Stainless Steel AISI 316L in Finite Element Simulations
    Snstab, Johan Kolst
    Faksvåg, Kristian Ullern
    Jakobsen, Lars Omland
    Clausen, Arild Holm
    [J]. ce/papers, 2021, 4 (2-4) : 1589 - 1598
  • [6] Biocompatibility of MIM 316L stainless steel
    Shai-hong Zhu
    Guo-hui Wang
    Yan-zhong Zhao
    Yi-ming Li
    Ke-chao Zhou
    Bai-yun Huang
    [J]. Journal of Central South University of Technology, 2005, 12 : 9 - 11
  • [7] Diffusion bonding of 316L stainless steel
    Hu R.
    Ji K.
    Wang Y.
    Wang D.
    Yang Z.
    [J]. Hanjie Xuebao/Transactions of the China Welding Institution, 2023, 44 (05): : 1 - 6
  • [8] Biocompatibility of MIM 316L stainless steel
    Zhu, SH
    Wang, GH
    Zhao, YZ
    Li, YM
    Zhou, KC
    Huang, BY
    [J]. JOURNAL OF CENTRAL SOUTH UNIVERSITY OF TECHNOLOGY, 2005, 12 (Suppl 1): : 9 - 11
  • [9] An automatic pitting corrosion detection approach for 316L stainless steel
    Jimenez-Come, M. J.
    Turias, I. J.
    Trujillo, F. J.
    [J]. MATERIALS & DESIGN, 2014, 56 : 642 - 648
  • [10] Study on the cleanliness of 316L Stainless Steel
    Li, Gang
    Li, Jingshe
    Yang, Shufeng
    Wang, Yanjie
    Li, Naisong
    [J]. ADVANCED MATERIALS AND PROCESSES, PTS 1-3, 2011, 311-313 : 881 - +