Variable Selection in Regression Models Using Global Sensitivity Analysis

被引:4
|
作者
Becker, William [1 ]
Paruolo, Paolo [1 ]
Saltelli, Andrea [2 ]
机构
[1] European Commiss, Joint Res Ctr, Ispra, VA, Italy
[2] Univ Oberta Catalunya, Open Evidence Res, Barcelona, Spain
关键词
model selection; Monte Carlo; sensitivity analysis; simulation; FALSE DISCOVERY RATE;
D O I
10.1515/jtse-2018-0025
中图分类号
O1 [数学]; C [社会科学总论];
学科分类号
03 ; 0303 ; 0701 ; 070101 ;
摘要
Global sensitivity analysis is primarily used to investigate the effects of uncertainties in the input variables of physical models on the model output. This work investigates the use of global sensitivity analysis tools in the context of variable selection in regression models. Specifically, a global sensitivity measure is applied to a criterion of model fit, hence defining a ranking of regressors by importance; a testing sequence based on the 'Pantula-principle' is then applied to the corresponding nested submodels, obtaining a novel model-selection method. The approach is demonstrated on a growth regression case study, and on a number of simulation experiments, and it is found competitive with existing approaches to variable selection.
引用
收藏
页码:187 / 233
页数:47
相关论文
共 50 条
  • [1] Global Sensitivity Analysis for Optimization with Variable Selection
    Spagnol, Adrien
    Le Riche, Rodolphe
    Da Veiga, Sebastien
    [J]. SIAM-ASA JOURNAL ON UNCERTAINTY QUANTIFICATION, 2019, 7 (02): : 417 - 443
  • [2] Variable Selection for Global Frechet Regression
    Tucker, Danielle C.
    Wu, Yichao
    Mueller, Hans-Georg
    [J]. JOURNAL OF THE AMERICAN STATISTICAL ASSOCIATION, 2023, 118 (542) : 1023 - 1037
  • [3] VARIABLE SELECTION IN REGRESSION-MODELS USING PRINCIPAL COMPONENTS
    BONEH, S
    MENDIETA, GR
    [J]. COMMUNICATIONS IN STATISTICS-THEORY AND METHODS, 1994, 23 (01) : 197 - 213
  • [4] Variable selection in logistic regression models
    Zellner, D
    Keller, F
    Zellner, GE
    [J]. COMMUNICATIONS IN STATISTICS-SIMULATION AND COMPUTATION, 2004, 33 (03) : 787 - 805
  • [5] Bayesian variable selection for regression models
    Kuo, L
    Mallick, B
    [J]. AMERICAN STATISTICAL ASSOCIATION - 1996 PROCEEDINGS OF THE SECTION ON BAYESIAN STATISTICAL SCIENCE, 1996, : 170 - 175
  • [6] Variable selection in wavelet regression models
    Alsberg, BK
    Woodward, AM
    Winson, MK
    Rowland, JJ
    Kell, DB
    [J]. ANALYTICA CHIMICA ACTA, 1998, 368 (1-2) : 29 - 44
  • [7] Global sensitivity analysis using support vector regression
    Cheng, Kai
    Lu, Zhenzhou
    Zhou, Yicheng
    Shi, Yan
    Wei, Yuhao
    [J]. APPLIED MATHEMATICAL MODELLING, 2017, 49 : 587 - 598
  • [8] Variable selection in regression models using nonstandard optimisation of information criteria
    Kapetanios, George
    [J]. COMPUTATIONAL STATISTICS & DATA ANALYSIS, 2007, 52 (01) : 4 - 15
  • [9] Variable selection using a smooth information criterion for distributional regression models
    Meadhbh O’Neill
    Kevin Burke
    [J]. Statistics and Computing, 2023, 33 (3)
  • [10] Variable selection using a smooth information criterion for distributional regression models
    O'Neill, Meadhbh
    Burke, Kevin
    [J]. STATISTICS AND COMPUTING, 2023, 33 (03)