Kinematic formulas for finite vector spaces

被引:2
|
作者
Klain, DA [1 ]
机构
[1] Georgia Inst Technol, Sch Math, Atlanta, GA 30332 USA
基金
美国国家科学基金会;
关键词
D O I
10.1016/S0012-365X(97)00031-9
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We derive q-analogues of some fundamental theorems of convex geometry, including Helly's theorem, the principal kinematic formula, and Hadwiger's characterization theorem for invariant valuations.
引用
收藏
页码:121 / 132
页数:12
相关论文
共 50 条
  • [31] Threshold functions for incidence properties in finite vector spaces
    Kim, Jeong Han
    Lund, Ben
    Pham, Thang
    Yoo, Semin
    FINITE FIELDS AND THEIR APPLICATIONS, 2023, 87
  • [32] REPRESENTATION OF VECTOR-SPACES AS A FINITE UNION OF SUBSPACES
    LUH, J
    ACTA MATHEMATICA ACADEMIAE SCIENTIARUM HUNGARICAE, 1972, 23 (3-4): : 341 - 342
  • [33] KINEMATIC FORMULAS IN INTEGRAL GEOMETRY
    FU, JHG
    INDIANA UNIVERSITY MATHEMATICS JOURNAL, 1990, 39 (04) : 1115 - 1154
  • [34] Near-vector spaces determined by finite fields
    Howell, K. -T.
    Meyer, J. H.
    JOURNAL OF ALGEBRA, 2014, 398 : 55 - 62
  • [35] Orthogonal systems in vector spaces over finite rings
    Pham Van Thang
    Le Anh Vinh
    ELECTRONIC JOURNAL OF COMBINATORICS, 2012, 19 (02):
  • [36] EMBEDDING DISTANCE GRAPHS IN FINITE FIELD VECTOR SPACES
    Tosevich, Alex
    Parshall, Hans
    JOURNAL OF THE KOREAN MATHEMATICAL SOCIETY, 2019, 56 (06) : 1515 - 1528
  • [37] BIJECTIVE METHODS IN THE THEORY OF FINITE VECTOR-SPACES
    NIJENHUIS, A
    SOLOW, AE
    WILF, HS
    JOURNAL OF COMBINATORIAL THEORY SERIES A, 1984, 37 (01) : 80 - 84
  • [38] Lattices associated with vector spaces over a finite field
    Wang, Kaishun
    Li, Zengti
    LINEAR ALGEBRA AND ITS APPLICATIONS, 2008, 429 (2-3) : 439 - 446
  • [39] Kakeya-type sets in finite vector spaces
    Kopparty, Swastik
    Lev, Vsevolod F.
    Saraf, Shubhangi
    Sudan, Madhu
    JOURNAL OF ALGEBRAIC COMBINATORICS, 2011, 34 (03) : 337 - 355
  • [40] Tight wavelet frame sets in finite vector spaces
    Iosevich, Alex
    Lai, Chun-Kit
    Mayeli, Azita
    APPLIED AND COMPUTATIONAL HARMONIC ANALYSIS, 2019, 46 (01) : 192 - 205