Some nonlinear solutions of the linear Schrodinger equation for a free particle

被引:0
|
作者
Vega, Gabino Torres [1 ]
机构
[1] CINVESTAV, Dept Phys, Mexico City 07000, DF, Mexico
关键词
D O I
暂无
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We depict a method for reducing a linear combination of circular functions with different frequencies in their arguments (a non eigenfunction of the linear Schrodinger equation for a free particle) to a linear combination of the same functions but with the same frequency (now an eigenfunction). The method is inspired in the Jacobi's form of elliptic and hyperelliptic functions.
引用
收藏
页码:34 / 39
页数:6
相关论文
共 50 条
  • [21] Semiclassical solutions of the nonlinear Schrodinger equation
    Shapovalov, AV
    Trifonov, AY
    [J]. JOURNAL OF NONLINEAR MATHEMATICAL PHYSICS, 1999, 6 (02) : 127 - 138
  • [22] On Solutions to the Matrix Nonlinear Schrodinger Equation
    Domrin, A. V.
    [J]. COMPUTATIONAL MATHEMATICS AND MATHEMATICAL PHYSICS, 2022, 62 (06) : 920 - 932
  • [23] Multiple solutions for some nonlinear Schrodinger equations with indefinite linear part
    Wang, Feizhi
    [J]. JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2007, 331 (02) : 1001 - 1022
  • [24] Some nonlinear extensions for the schrodinger equation
    Lenzi, E. K.
    de Castro, A. S. M.
    Mendes, R. S.
    [J]. CHINESE JOURNAL OF PHYSICS, 2020, 66 : 74 - 81
  • [25] Non-zero solutions for a Schrodinger equation with indefinite linear and nonlinear terms
    Costa, DG
    Tehrani, H
    [J]. PROCEEDINGS OF THE ROYAL SOCIETY OF EDINBURGH SECTION A-MATHEMATICS, 2004, 134 : 249 - 258
  • [26] Some special solutions of the Schrodinger equation
    Barcelo, J. A.
    Bennett, J. M.
    Carbery, A.
    Ruiz, A.
    Vilela, M. C.
    [J]. INDIANA UNIVERSITY MATHEMATICS JOURNAL, 2007, 56 (04) : 1581 - 1593
  • [27] Asymptotically-free solutions for the short-range nonlinear Schrodinger equation
    Nakanishi, K
    [J]. SIAM JOURNAL ON MATHEMATICAL ANALYSIS, 2001, 32 (06) : 1265 - 1271
  • [28] Comparison of soliton solutions of the nonlinear Schrodinger equation and the nonlinear amplitude equation
    Dakova, A.
    Dakova, D.
    Kovachev, L.
    [J]. 18TH INTERNATIONAL SCHOOL ON QUANTUM ELECTRONICS: LASER PHYSICS AND APPLICATIONS, 2015, 9447
  • [29] Some mixed trigonometric complex soliton solutions to the perturbed nonlinear Schrodinger equation
    Gao, Wei
    Ghanbari, Behzad
    Gunerhan, Hatira
    Baskonus, Haci Mehmet
    [J]. MODERN PHYSICS LETTERS B, 2020, 34 (03):
  • [30] Some new families of exact solutions to a new extension of nonlinear Schrodinger equation
    Ghanbari, Behzad
    Gunerhan, Hatira
    Ilhan, Onur Alp
    Baskonus, Haci Mehmet
    [J]. PHYSICA SCRIPTA, 2020, 95 (07)