Improving Clustering Method Performance Using K-Means, Mini Batch K-Means, BIRCH and Spectral

被引:3
|
作者
Wahyuningrum, Tenia [1 ]
Khomsah, Siti [2 ]
Suyanto, Suyanto [3 ]
Meliana, Selly [3 ]
Yunanto, Prasti Eko [3 ]
Al Maki, Wikky F. [3 ]
机构
[1] Inst Teknol Telkom Purwokerto, Dept Informat, Banyumas, Indonesia
[2] Inst Teknol Telkom Purwokerto, Dept Data Sci, Banyumas, Indonesia
[3] Telkom Univ, Sch Comp, Bandung, Indonesia
关键词
clustering; KNN; K-Means; BIRCH; Spectral;
D O I
10.1109/ISRITI54043.2021.9702823
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
The most pressing problem of the k-Nearest Neighbor (KNN) classification method is voting technology, which will lead to poor accuracy of some randomly distributed complex data sets. To overcome the weakness of KNN, we added a step before the KNN classification phase. We developed a new schema for grouping data sets, making the number of clusters greater than the number of data classes. In addition, the committee selects each cluster so that it does not use voting techniques such as standard KNN methods. This study uses two sequential methods, namely the clustering method and the KNN method. Clustering methods can be used to group records into multiple clusters to select commissions from these clusters. Five clustering methods were tested: K-Means, K-Means with Principal Component Analysis (PCA), Mini Batch K-Means, Spectral and Balanced Iterative Reduction and Clustering using Hierarchies (BIRCH). All tested clustering methods are based on the cluster type of the center of gravity. According to the result, the BIRCH method has the lowest error rate among the five clustering methods (2.13), and K-Means has the largest clusters (156.63).
引用
收藏
页数:5
相关论文
共 50 条
  • [31] On autonomous k-means clustering
    Elomaa, T
    Koivistoinen, H
    [J]. FOUNDATIONS OF INTELLIGENT SYSTEMS, PROCEEDINGS, 2005, 3488 : 228 - 236
  • [32] On the Optimality of k-means Clustering
    Dalton, Lori A.
    [J]. 2013 IEEE INTERNATIONAL WORKSHOP ON GENOMIC SIGNAL PROCESSING AND STATISTICS (GENSIPS 2013), 2013, : 70 - 71
  • [33] Transformed K-means Clustering
    Goel, Anurag
    Majumdar, Angshul
    [J]. 29TH EUROPEAN SIGNAL PROCESSING CONFERENCE (EUSIPCO 2021), 2021, : 1526 - 1530
  • [34] Balanced K-Means for Clustering
    Malinen, Mikko I.
    Franti, Pasi
    [J]. STRUCTURAL, SYNTACTIC, AND STATISTICAL PATTERN RECOGNITION, 2014, 8621 : 32 - 41
  • [35] Discriminative k-Means Clustering
    Arandjelovic, Ognjen
    [J]. 2013 INTERNATIONAL JOINT CONFERENCE ON NEURAL NETWORKS (IJCNN), 2013,
  • [36] Spherical k-Means Clustering
    Hornik, Kurt
    Feinerer, Ingo
    Kober, Martin
    Buchta, Christian
    [J]. JOURNAL OF STATISTICAL SOFTWARE, 2012, 50 (10): : 1 - 22
  • [37] Subspace K-means clustering
    Timmerman, Marieke E.
    Ceulemans, Eva
    De Roover, Kim
    Van Leeuwen, Karla
    [J]. BEHAVIOR RESEARCH METHODS, 2013, 45 (04) : 1011 - 1023
  • [38] K-Means Clustering Explained
    Emerson, Robert Wall
    [J]. JOURNAL OF VISUAL IMPAIRMENT & BLINDNESS, 2024, 118 (01) : 65 - 66
  • [39] Power k-Means Clustering
    Xu, Jason
    Lange, Kenneth
    [J]. INTERNATIONAL CONFERENCE ON MACHINE LEARNING, VOL 97, 2019, 97
  • [40] Subspace K-means clustering
    Marieke E. Timmerman
    Eva Ceulemans
    Kim De Roover
    Karla Van Leeuwen
    [J]. Behavior Research Methods, 2013, 45 : 1011 - 1023