Model Establishment of Cross-Disease Course Prediction Using Transfer Learning

被引:1
|
作者
Ying, Josh Jia-Ching [1 ]
Chang, Yen-Ting [1 ]
Chen, Hsin-Hua [2 ,3 ,4 ,5 ,6 ,7 ,8 ,9 ,10 ]
Chao, Wen-Cheng [11 ,12 ]
机构
[1] Natl Chung Hsing Univ, Dept Management Informat Syst, Taichung 402, Taiwan
[2] Taichung Vet Gen Hosp, Dept Med Res, Taichung 402, Taiwan
[3] Taichung Vet Gen Hosp, Dept Internal Med, Div Allergy Immunol & Rheumatol, Taichung 402, Taiwan
[4] Chung Hsing Univ, Inst Biomed Sci, Taichung 402, Taiwan
[5] Chung Hsing Univ, Rong Hsing Res Ctr Translat Med, Taichung 402, Taiwan
[6] Natl Yang Ming Univ, Inst Publ Hlth, Taipei 112, Taiwan
[7] Natl Yang Ming Univ, Community Med Res Ctr, Taipei 112, Taiwan
[8] Tunghai Univ, Dept Ind Engn & Enterprise Informat, Taichung 402, Taiwan
[9] Chung Shan Med Univ, Inst Med, Taichung 402, Taiwan
[10] Natl Yang Ming Univ, Sch Med, Taipei 112, Taiwan
[11] Taichung Vet Gen Hosp, Dept Crit Care Med, Taichung 402, Taiwan
[12] Tunghai Univ, Dept Comp Sci, Taichung 402, Taiwan
来源
APPLIED SCIENCES-BASEL | 2022年 / 12卷 / 10期
关键词
deep learning; time series models; transfer learning; electronic health records; RHEUMATOID-ARTHRITIS; DEEP;
D O I
10.3390/app12104907
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
In recent years, the development and application of artificial intelligence have both been topics of concern. In the medical field, an important direction of medical technology development is the extraction and use of applicable information from existing medical records to provide more accurate and helpful diagnosis suggestions. Therefore, this paper proposes using the development of diseases with easily discernible symptoms to predict the development of other medically related but distinct diseases that lack similar data. The aim of this study is to improve the ease of assessing the development of diseases in which symptoms are difficult to detect, and to improve the utilization of medical data. First, a time series model was used to capture the continuous manifestations of diseases with symptoms that could be easily found at different time intervals. Then, through transfer learning and attention mechanism, the general features captured were applied to the predictive model of the development of diseases with insufficient data and symptoms that are difficult to detect. Finally, we conducted a comprehensive experimental study based on a dataset collected from the National Health Insurance Research Database in Taiwan. The results demonstrate that the effectiveness of our transfer learning approach outperforms state-of-the-art deep learning prediction models for disease course prediction.
引用
收藏
页数:24
相关论文
共 50 条
  • [31] Intelligent Stroke Disease Prediction Model Using Deep Learning Approaches
    Gao, Chunhua
    Wang, Hui
    STROKE RESEARCH AND TREATMENT, 2024, 2024
  • [32] Heart Disease Prediction Using Logistic Regression Machine Learning Model
    Hrvat, Faris
    Spahic, Lemana
    Aleta, Amina
    MEDICON 2023 AND CMBEBIH 2023, VOL 1, 2024, 93 : 654 - 662
  • [33] Leveraging Cross-Disease Genetic Correlations and Large-Scale DNA-Linked Electronic Medical Records to Improve Risk Prediction of Disease
    Zhong, Xue
    Wei, Qiang
    Chen, Rui
    Cox, Nancy J.
    Li, Bingshan
    GENETIC EPIDEMIOLOGY, 2016, 40 (07) : 673 - 674
  • [34] Real Time Earthquake Prediction Using Cross Correlation Analysis & Transfer Function Model
    Rajabi, Navid
    Rajabi, Omid
    2015 2ND INTERNATIONAL CONFERENCE ON KNOWLEDGE-BASED ENGINEERING AND INNOVATION (KBEI), 2015, : 237 - 241
  • [35] Transfer Learning for Cross-Game Prediction of Player Experience
    Shaker, Noor
    Abou-Zleikha, Mohamed
    2016 IEEE CONFERENCE ON COMPUTATIONAL INTELLIGENCE AND GAMES (CIG), 2016,
  • [36] A Survey on Transfer Learning for Cross-Project Defect Prediction
    Sotto-Mayor, Bruno
    Kalech, Meir
    IEEE ACCESS, 2024, 12 : 93398 - 93425
  • [37] Transfer learning for cross-company software defect prediction
    Ma, Ying
    Luo, Guangchun
    Zeng, Xue
    Chen, Aiguo
    INFORMATION AND SOFTWARE TECHNOLOGY, 2012, 54 (03) : 248 - 256
  • [38] Prediction and classification of Alzheimer Disease categories using Integrated Deep Transfer Learning Approach
    Leela M.
    Helenprabha K.
    Sharmila L.
    Measurement: Sensors, 2023, 27
  • [39] Multi disease-prediction framework using hybrid deep learning: an optimal prediction model
    Ampavathi, Anusha
    Saradhi, T. Vijaya
    COMPUTER METHODS IN BIOMECHANICS AND BIOMEDICAL ENGINEERING, 2021, 24 (10) : 1146 - 1168
  • [40] Facial skin disease prediction using StarGAN v2 and transfer learning
    Holmes, Kristen
    Sharma, Poonam
    Fernandes, Steven
    INTELLIGENT DECISION TECHNOLOGIES-NETHERLANDS, 2023, 17 (01): : 55 - 66