A time series is a sequence of observations, measured at certain moments in time, ordered chronologically and evenly spaced, so that the data are usually dependent on each other. Currently, time series are used to estimate wind gusts, which are highly non-linear, unknown, and at times unpredictable. A good estimation of wind gusts implies correct planning on the generation of clean wind energy. In this work, we use Artificial Intelligence (AI) techniques such as the use of convolutional neural networks for wind gust estimation. One of the best models for dealing with this type of information is the Large Short Term Memory (LSTM) network because it is a type of recurrent network that specializes in sequence information. In this work, an LSTM prediction model is implemented for five different wind speed data sets using different multi-step forecasting strategies. The strategies used are Recursive, Direct, MIMO (multiple-input to multiple-output), DIRMO (Combination of direct strategy and MIMO), and DirREC (Combination of direct and recursive strategy).
机构:
Chinese Acad Sci, Inst Atmospher Phys, State Key Lab Numer Modeling Atmospher Sci & Geop, Beijing 100029, Peoples R ChinaChinese Acad Sci, Inst Atmospher Phys, State Key Lab Numer Modeling Atmospher Sci & Geop, Beijing 100029, Peoples R China
Zhao, Jing
Wang, Jianzhou
论文数: 0引用数: 0
h-index: 0
机构:
Dongbei Univ Finance & Econ, Sch Stat, Dalian 116000, Peoples R ChinaChinese Acad Sci, Inst Atmospher Phys, State Key Lab Numer Modeling Atmospher Sci & Geop, Beijing 100029, Peoples R China
Wang, Jianzhou
Guo, Zhenhai
论文数: 0引用数: 0
h-index: 0
机构:
Chinese Acad Sci, Inst Atmospher Phys, State Key Lab Numer Modeling Atmospher Sci & Geop, Beijing 100029, Peoples R ChinaChinese Acad Sci, Inst Atmospher Phys, State Key Lab Numer Modeling Atmospher Sci & Geop, Beijing 100029, Peoples R China
Guo, Zhenhai
Guo, Yanling
论文数: 0引用数: 0
h-index: 0
机构:
Lanzhou Univ, Coll Atmospher Sci, Lanzhou 730000, Gansu, Peoples R ChinaChinese Acad Sci, Inst Atmospher Phys, State Key Lab Numer Modeling Atmospher Sci & Geop, Beijing 100029, Peoples R China
Guo, Yanling
Lin, Wantao
论文数: 0引用数: 0
h-index: 0
机构:
Chinese Acad Sci, Inst Atmospher Phys, State Key Lab Numer Modeling Atmospher Sci & Geop, Beijing 100029, Peoples R ChinaChinese Acad Sci, Inst Atmospher Phys, State Key Lab Numer Modeling Atmospher Sci & Geop, Beijing 100029, Peoples R China
Lin, Wantao
Lin, Yihua
论文数: 0引用数: 0
h-index: 0
机构:
Chinese Acad Sci, Inst Atmospher Phys, State Key Lab Numer Modeling Atmospher Sci & Geop, Beijing 100029, Peoples R ChinaChinese Acad Sci, Inst Atmospher Phys, State Key Lab Numer Modeling Atmospher Sci & Geop, Beijing 100029, Peoples R China