The Marshall-Olkin exponential Weibull distribution

被引:0
|
作者
Pogany, Tibor K. [1 ,2 ]
Saboor, Abdus [3 ]
Provost, Serge [4 ]
机构
[1] Obuda Univ, John von Neumann Fac Informat, H-1034 Budapest, Hungary
[2] Univ Rijeka, Fac Maritime Studies, Rijeka 51000, Croatia
[3] Kohat Univ Sci & Technol, Dept Math, Kohat, Pakistan
[4] Univ Western Ontario, Dept Stat & Actuarial Sci, London, ON N6A 5B7, Canada
来源
关键词
Marshall-Olkin exponential-Weibull distribution; goodness-of-fit statistics; moments; median; mode; unimodal distribution; quantile function; Fox-Wright (p)Psi(q) function; Goyal-Laddha generalized Hurwitz-Lerch zeta function;
D O I
暂无
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
A new four-parameter model called the Marshall-Olkin exponential-Weibull probability distribution is being introduced in this paper, generalizing a number of known lifetime distributions. This model turns out to be quite flexible for analyzing positive data. The hazard rate functions of the new model can be increasing and bathtub shaped. Our main objectives are to obtain representations of certain associated statistical functions, to estimate the parameters of the proposed distribution and to discuss its modality. As an application, the probability density function is utilized to model two actual data sets. The new distribution is shown to provide a better fit than related distributions as measured by the Anderson-Darling and Cramer-von Mises goodness-of-fit statistics. The proposed distribution may serve as a viable alternative to other distributions available in the literature for modeling positive data arising in various fields of scientific investigation such as reliability theory, hydrology, medicine, meteorology, survival analysis and engineering.
引用
收藏
页码:1579 / 1594
页数:16
相关论文
共 50 条
  • [31] Marshall-Olkin q-Weibull distribution and max-min processes
    Jose, K. K.
    Naik, Shanoja R.
    Ristic, Miroslav M.
    [J]. STATISTICAL PAPERS, 2010, 51 (04) : 837 - 851
  • [32] On Record Values and Reliability Properties of Marshall-Olkin Extended Exponential Distribution
    Jose, K. K.
    Krishna, E.
    Ristic, Miroslav M.
    [J]. JOURNAL OF STATISTICAL THEORY AND APPLICATIONS, 2014, 13 (03): : 247 - 262
  • [33] Generalized Order Statistics from Marshall-Olkin Extended Exponential Distribution
    Haseeb Athar
    Saima Nayabuddin
    [J]. Journal of Statistical Theory and Applications, 2019, 18 : 129 - 135
  • [34] Marshall-Olkin Weibull-Burr XII distribution with application to physics data
    Alsadat, Najwan
    Nagarjuna, Vasili B. V.
    Hassan, Amal S.
    Elgarhy, Mohammed
    Ahmad, Hijaz
    Almetwally, Ehab M.
    [J]. AIP ADVANCES, 2023, 13 (09)
  • [35] Objective Bayesian analysis of Marshall-Olkin bivariate Weibull distribution with partial information
    Panwar, M. S.
    Barnwal, Vikas
    [J]. COMMUNICATIONS IN STATISTICS-THEORY AND METHODS, 2024, 53 (15) : 5331 - 5352
  • [36] A new family of Marshall-Olkin extended generalized linear exponential distribution
    Okasha, Hassan M.
    Kayid, M.
    [J]. JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2016, 296 : 576 - 592
  • [37] THE WEIBULL MARSHALL-OLKIN LOMAX DISTRIBUTION WITH APPLICATIONS TO BLADDER AND HEAD CANCER DATA
    Kumar, Devendra
    Kumar, Maneesh
    Abd El-Bar, Ahmed M. T.
    Lima, Maria Do Carmo S.
    [J]. JOURNAL OF APPLIED MATHEMATICS & INFORMATICS, 2021, 39 (5-6): : 785 - 804
  • [38] The Marshall-Olkin generalized gamma distribution
    Barriga, Gladys D. C.
    Cordeiro, Gauss M.
    Dey, Dipak K.
    Cancho, Vicente G.
    Louzada, Francisco
    Suzuki, Adriano K.
    [J]. COMMUNICATIONS FOR STATISTICAL APPLICATIONS AND METHODS, 2018, 25 (03) : 245 - 261
  • [39] The Exponentiated Marshall-Olkin Frechet Distribution
    Mansour, Mahmoud M.
    Abd Elrazik, Enayat M.
    Butt, Nadeem Shafique
    [J]. PAKISTAN JOURNAL OF STATISTICS AND OPERATION RESEARCH, 2018, 14 (01) : 57 - 74
  • [40] THE BETA MARSHALL-OLKIN LOMAX DISTRIBUTION
    Tablada, Claudio J.
    Cordeiro, Gauss M.
    [J]. REVSTAT-STATISTICAL JOURNAL, 2019, 17 (03) : 321 - 344