Rigidity of determinantal point processes with the Airy, the Bessel and the Gamma kernel

被引:33
|
作者
Bufetov, Alexander I. [1 ,2 ,3 ,4 ]
机构
[1] Aix Marseille Univ, CNRS, Cent Marseille, I2M,UMR 7373, Marseille, France
[2] VA Steklov Math Inst, Moscow 117333, Russia
[3] Russian Acad Sci, Inst Informat Transmiss Problems, Moscow, Russia
[4] Natl Res Univ, Higher Sch Econ, Moscow, Russia
关键词
Determinantal point processes; Airy kernel; Bessel kernel; Gamma kernel; Rigidity; LEVEL-SPACING DISTRIBUTIONS; FERMION;
D O I
10.1007/s13373-015-0080-z
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
A point process is said to be rigid if for any bounded domain in the phase space, the number of particles in the domain is almost surely determined by the restriction of the configuration to the complement of our bounded domain. The main result of this paper is that determinantal point processes with the Airy, the Bessel and the Gamma kernels are rigid. The proof follows the scheme used by Ghosh, Ghosh and Peres: the main step is the construction of a sequence of additive statistics with variance going to zero.
引用
收藏
页码:163 / 172
页数:10
相关论文
共 50 条
  • [41] Functional summary statistics for point processes on the sphere with an application to determinantal point processes
    Moller, Jesper
    Rubak, Ege
    SPATIAL STATISTICS, 2016, 18 : 4 - 23
  • [42] Partial isometries, duality, and determinantal point processes
    Katori, Makoto
    Shirai, Tomoyuki
    RANDOM MATRICES-THEORY AND APPLICATIONS, 2022, 11 (03)
  • [43] QUASI-SYMMETRIES OF DETERMINANTAL POINT PROCESSES
    Bufetov, Alexander I.
    ANNALS OF PROBABILITY, 2018, 46 (02): : 956 - 1003
  • [44] Conditional intensity and Gibbsianness of determinantal point processes
    Georgii, HO
    Yoo, HJ
    JOURNAL OF STATISTICAL PHYSICS, 2005, 118 (1-2) : 55 - 84
  • [45] Average characteristic polynomials of determinantal point processes
    Hardy, Adrien
    ANNALES DE L INSTITUT HENRI POINCARE-PROBABILITES ET STATISTIQUES, 2015, 51 (01): : 283 - 303
  • [46] Determinantal Point Processes and Fermion Quasifree States
    Olshanski, Grigori
    COMMUNICATIONS IN MATHEMATICAL PHYSICS, 2020, 378 (01) : 507 - 555
  • [47] On the mean projection theorem for determinantal point processes
    Kassel, Adrien
    Levy, Thierry
    ALEA-LATIN AMERICAN JOURNAL OF PROBABILITY AND MATHEMATICAL STATISTICS, 2023, 20 : 497 - 504
  • [48] Tweet Timeline Generation with Determinantal Point Processes
    Yao, Jin-ge
    Fan, Feifan
    Zhao, Wayne Xin
    Wan, Xiaojun
    Chang, Edward
    Xiao, Jianguo
    THIRTIETH AAAI CONFERENCE ON ARTIFICIAL INTELLIGENCE, 2016, : 3080 - 3086
  • [49] Online MAP Inference of Determinantal Point Processes
    Bhaskara, Aditya
    Karbasi, Amin
    Lattanzi, Silvio
    Zadimoghaddam, Morteza
    ADVANCES IN NEURAL INFORMATION PROCESSING SYSTEMS 33, NEURIPS 2020, 2020, 33
  • [50] Equivalent symmetric kernels of determinantal point processes
    Stevens, Marco
    RANDOM MATRICES-THEORY AND APPLICATIONS, 2021, 10 (03)