European rainbow option values under the two-asset Merton jump-diffusion model

被引:2
|
作者
Boen, Lynn [1 ]
机构
[1] Univ Antwerp, Dept Math & Comp Sci, Middelheimlaan 1, B-2020 Antwerp, Belgium
关键词
Option pricing; Jump-diffusion; European options; Rainbow options; Equivalent martingale measure; PRICING OPTIONS; SCHEMES;
D O I
10.1016/j.cam.2019.112344
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper we present a semi-closed analytical formula for the values of European call and put options on the minimum or maximum of two assets under the two-asset Merton jump-diffusion model. In addition, useful formulas for several first- and second-order Greeks of these options are derived. (C) 2019 Elsevier B.V. All rights reserved.
引用
收藏
页数:15
相关论文
共 50 条
  • [41] EQUILIBRIUM ASSET AND OPTION PRICING UNDER JUMP DIFFUSION
    Zhang, Jin E.
    Zhao, Huimin
    Chang, Eric C.
    [J]. MATHEMATICAL FINANCE, 2012, 22 (03) : 538 - 568
  • [42] FOURTH-ORDER COMPACT SCHEME FOR OPTION PRICING UNDER THE MERTON'S AND KOU'S JUMP-DIFFUSION MODELS
    Patel, Kuldip Singh
    Mehra, Mani
    [J]. INTERNATIONAL JOURNAL OF THEORETICAL AND APPLIED FINANCE, 2018, 21 (04)
  • [43] Option Pricing Under Jump-Diffusion Processes with Regime Switching
    Nikita Ratanov
    [J]. Methodology and Computing in Applied Probability, 2016, 18 : 829 - 845
  • [44] Option Pricing Under Jump-Diffusion Processes with Regime Switching
    Ratanov, Nikita
    [J]. METHODOLOGY AND COMPUTING IN APPLIED PROBABILITY, 2016, 18 (03) : 829 - 845
  • [45] Dynamic Asset Allocation with Loss Aversion in a Jump-diffusion Model
    Mi, Hui
    Bi, Xiu-chun
    Zhang, Shu-guang
    [J]. ACTA MATHEMATICAE APPLICATAE SINICA-ENGLISH SERIES, 2015, 31 (02): : 557 - 566
  • [46] Dynamic asset allocation with loss aversion in a jump-diffusion model
    Hui Mi
    Xiu-chun Bi
    Shu-guang Zhang
    [J]. Acta Mathematicae Applicatae Sinica, English Series, 2015, 31 : 557 - 566
  • [47] Dynamic Asset Allocation with Loss Aversion in a Jump-diffusion Model
    Hui MI
    Xiu-chun BI
    Shu-guang ZHANG
    [J]. Acta Mathematicae Applicatae Sinica, 2015, 31 (02) : 557 - 566
  • [48] Numerical valuation of two-asset options under jump diffusion models using Gauss-Hermite quadrature
    Fakharany, M.
    Egorova, V. N.
    Company, R.
    [J]. JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2018, 330 : 822 - 834
  • [49] Analysis of a jump-diffusion option pricing model with serially correlated jump sizes
    Lin, Xenos Chang-Shuo
    Miao, Daniel Wei-Chung
    Chao, Wan-Ling
    [J]. COMMUNICATIONS IN STATISTICS-THEORY AND METHODS, 2018, 47 (04) : 953 - 979
  • [50] Option Pricing Model with Transaction Cost in the Jump-Diffusion Environment
    Zhang Yuansi
    [J]. CONTEMPORARY INNOVATION AND DEVELOPMENT IN MANAGEMENT SCIENCE, 2012, : 29 - 34