The level set method for etching and deposition

被引:3
|
作者
Adalsteinsson, D [1 ]
Evans, LC
Ishii, H
机构
[1] Univ Calif Berkeley, Lawrence Berkeley Lab, Berkeley, CA 94720 USA
[2] Univ Calif Berkeley, Dept Math, Berkeley, CA 94720 USA
[3] Tokyo Metropolitan Univ, Dept Math, Hachioji, Tokyo 19203, Japan
来源
关键词
D O I
10.1142/S0218202597000578
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We provide a rigorous interpretation of the level set approach to certain nonlocal geometric motions modelling etching effects in manufacture. The shadowing of certain parts of a surface by other parts gives rise to a nonlocal Hamilton-Jacobi type PDE, with a multivalued Hamiltonian. We also show that deposition effects do not fall within the conventional level set framework, and accordingly must be reinterpreted for numerical implementation.
引用
收藏
页码:1153 / 1186
页数:34
相关论文
共 50 条
  • [31] The level set method for systems of PDEs
    Bellettini, G.
    Chermisi, H.
    Novaga, M.
    [J]. COMMUNICATIONS IN PARTIAL DIFFERENTIAL EQUATIONS, 2007, 32 (7-9) : 1043 - 1064
  • [32] A Lagrangian particle level set method
    Hieber, SE
    Koumoutsakos, P
    [J]. JOURNAL OF COMPUTATIONAL PHYSICS, 2005, 210 (01) : 342 - 367
  • [33] A Level Set Method for Gland Segmentation
    Wang, Chen
    Bu, Hong
    Bao, Ji
    Li, Chunming
    [J]. 2017 IEEE CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION WORKSHOPS (CVPRW), 2017, : 865 - 873
  • [34] A Novel Level Set Initialization Method
    Liu Tao
    Zhou Qinwu
    Bian Zhengzhong
    Cao TieSheng
    [J]. PROCEEDINGS OF THE 2009 2ND INTERNATIONAL CONGRESS ON IMAGE AND SIGNAL PROCESSING, VOLS 1-9, 2009, : 1312 - +
  • [35] Stabilized conservative level set method
    Shervani-Tabar, Navid
    Vasilyev, Oleg V.
    [J]. JOURNAL OF COMPUTATIONAL PHYSICS, 2018, 375 : 1033 - 1044
  • [36] Improved conservative level set method
    Zhao, Lanhao
    Bai, Xin
    Li, Tongchun
    Williams, J. J. R.
    [J]. INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN FLUIDS, 2014, 75 (08) : 575 - 590
  • [37] A level set method for inverse problems
    Burger, M.
    [J]. 1600, Institute of Physics Publishing (17):
  • [38] A new fast level set method
    Ganoun, A
    Canals, R
    [J]. NORSIG 2004: PROCEEDINGS OF THE 6TH NORDIC SIGNAL PROCESSING SYMPOSIUM, 2004, 46 : 232 - 235
  • [39] A Level Set Method for Image Restoration
    Huang, Waibin
    Lin, Weiran
    [J]. INTELLIGENT STRUCTURE AND VIBRATION CONTROL, PTS 1 AND 2, 2011, 50-51 : 880 - +
  • [40] A level set method for dislocation dynamics
    Xiang, Y
    Cheng, LT
    Srolovitz, DJ
    E, WN
    [J]. ACTA MATERIALIA, 2003, 51 (18) : 5499 - 5518