Compositional Deep Learning in Futhark

被引:2
|
作者
Duc Minh Tran [1 ]
Henriksen, Troels [1 ]
Elsman, Martin [1 ]
机构
[1] Univ Copenhagen, Copenhagen, Denmark
关键词
deep learning; data-parallelism; functional languages;
D O I
10.1145/3331553.3342617
中图分类号
TP31 [计算机软件];
学科分类号
081202 ; 0835 ;
摘要
We present a design pattern for composing deep learning networks in a typed, higher-order fashion. The exposed library functions are generically typed and the composition structure allows for networks to be trained (using backpropagation) and for trained networks to be used for predicting new results (using forward-propagation). Individual layers in a network can take different forms ranging over dense sigmoid layers to convolutional layers. The paper discusses different typing techniques aimed at enforcing proper use and composition of networks. The approach is implemented in Futhark, a data-parallel functional language and compiler targeting GPU architectures, and we demonstrate that Futhark's elimination of higher-order functions and modules leads to efficient generated code.
引用
收藏
页码:47 / 59
页数:13
相关论文
共 50 条
  • [41] Autostacker: A Compositional Evolutionary Learning System
    Chen, Boyuan
    Wu, Harvey
    Mo, Warren
    Chattopadhyay, Ishanu
    Lipson, Hod
    GECCO'18: PROCEEDINGS OF THE 2018 GENETIC AND EVOLUTIONARY COMPUTATION CONFERENCE, 2018, : 402 - 409
  • [42] COMPOSUITE: A COMPOSITIONAL REINFORCEMENT LEARNING BENCHMARK
    Mendez, Jorge A.
    Hussing, Marcel
    Gummadi, Meghna
    Eaton, Eric
    CONFERENCE ON LIFELONG LEARNING AGENTS, VOL 199, 2022, 199
  • [43] Compositional engineering of perovskites with machine learning
    Laakso, Jarno
    Todorovic, Milica
    Li, Jingrui
    Zhang, Guo-Xu
    Rinke, Patrick
    PHYSICAL REVIEW MATERIALS, 2022, 6 (11)
  • [44] Compositional Learning for Human Object Interaction
    Kato, Keizo
    Li, Yin
    Gupta, Abhinav
    COMPUTER VISION - ECCV 2018, PT XIV, 2018, 11218 : 247 - 264
  • [45] Unsupervised Learning of Compositional Energy Concepts
    Du, Yilun
    Li, Shuang
    Sharma, Yash
    Tenenbaum, Joshua B.
    Mordatch, Igor
    ADVANCES IN NEURAL INFORMATION PROCESSING SYSTEMS 34 (NEURIPS 2021), 2021,
  • [46] Compositional Learning for Interleaving Parallel Automata
    Labbaf, Faezeh
    Groote, Jan Friso
    Hojjat, Hossein
    Mousavi, Mohammad Reza
    FOUNDATIONS OF SOFTWARE SCIENCE AND COMPUTATION STRUCTURES, FOSSACS 2023, 2023, 13992 : 413 - 435
  • [47] Compositional clustering in task structure learning
    Franklin, Nicholas T.
    Frank, Michael J.
    PLOS COMPUTATIONAL BIOLOGY, 2018, 14 (04)
  • [48] Compositional inductive biases in function learning
    Schulz, Eric
    Tenenbaum, Joshua B.
    Duvenaud, David
    Speekenbrink, Maarten
    Gershman, Samuel J.
    COGNITIVE PSYCHOLOGY, 2017, 99 : 44 - 79
  • [49] Compositional diversity in visual concept learning
    Zhou, Yanli
    Feinman, Reuben
    Lake, Brenden M.
    COGNITION, 2024, 244
  • [50] Learning the compositional nature of visual objects
    Ommer, Bjoern
    Buhmann, Joachim M.
    2007 IEEE CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION, VOLS 1-8, 2007, : 1406 - +