Compositional Deep Learning in Futhark

被引:2
|
作者
Duc Minh Tran [1 ]
Henriksen, Troels [1 ]
Elsman, Martin [1 ]
机构
[1] Univ Copenhagen, Copenhagen, Denmark
关键词
deep learning; data-parallelism; functional languages;
D O I
10.1145/3331553.3342617
中图分类号
TP31 [计算机软件];
学科分类号
081202 ; 0835 ;
摘要
We present a design pattern for composing deep learning networks in a typed, higher-order fashion. The exposed library functions are generically typed and the composition structure allows for networks to be trained (using backpropagation) and for trained networks to be used for predicting new results (using forward-propagation). Individual layers in a network can take different forms ranging over dense sigmoid layers to convolutional layers. The paper discusses different typing techniques aimed at enforcing proper use and composition of networks. The approach is implemented in Futhark, a data-parallel functional language and compiler targeting GPU architectures, and we demonstrate that Futhark's elimination of higher-order functions and modules leads to efficient generated code.
引用
收藏
页码:47 / 59
页数:13
相关论文
共 50 条
  • [1] Deep Compositional Metric Learning
    Zheng, Wenzhao
    Wang, Chengkun
    Lu, Jiwen
    Zhou, Jie
    2021 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION, CVPR 2021, 2021, : 9316 - 9325
  • [2] AOGNets: Compositional Grammatical Architectures for Deep Learning
    Li, Xilai
    Song, Xi
    Wu, Tianfu
    2019 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR 2019), 2019, : 6213 - 6223
  • [3] High-Performance Defunctionalisation in Futhark
    Hovgaard, Anders Kiel
    Henriksen, Troels
    Elsman, Martin
    TRENDS IN FUNCTIONAL PROGRAMMING (TFP 2018), 2019, 11457 : 136 - 156
  • [4] Reinforcement Learning inspired Deep Learned Compositional Model for Decision Making in Tracking
    Chakraborty, Anit
    Dutta, Sayandip
    Bhattacharyya, Siddhartha
    Platos, Jan
    Snasel, Vaclav
    2018 FOURTH IEEE INTERNATIONAL CONFERENCE ON RESEARCH IN COMPUTATIONAL INTELLIGENCE AND COMMUNICATION NETWORKS (ICRCICN), 2018, : 158 - 163
  • [6] Computing Persistent Homology in Futhark
    von Bromssen, Erik
    PROCEEDINGS OF THE 9TH ACM SIGPLAN INTERNATIONAL WORKSHOP ON FUNCTIONAL HIGH-PERFORMANCE AND NUMERICAL COMPUTING (FHPNC '21), 2021, : 24 - 36
  • [7] Deep Compositional Spatial Models
    Zammit-Mangion, Andrew
    Ng, Tin Lok James
    Vu, Quan
    Filippone, Maurizio
    JOURNAL OF THE AMERICAN STATISTICAL ASSOCIATION, 2022, 117 (540) : 1787 - 1808
  • [8] Towards Deep Compositional Networks
    Tabernik, Domen
    Kristan, Matej
    Wyatt, Jeremy L.
    Leonardis, Ales
    2016 23RD INTERNATIONAL CONFERENCE ON PATTERN RECOGNITION (ICPR), 2016, : 3470 - 3475
  • [9] Compositional stratification in the deep mantle
    Kellogg, LH
    Hager, BH
    van der Hilst, RD
    SCIENCE, 1999, 283 (5409) : 1881 - 1884
  • [10] Deep learning framework for uncovering compositional and environmental contributions to pitting resistance in passivating alloys
    Kasturi Narasimha Sasidhar
    Nima Hamidi Siboni
    Jaber Rezaei Mianroodi
    Michael Rohwerder
    Jörg Neugebauer
    Dierk Raabe
    npj Materials Degradation, 6