Context-Aware Graph Convolutional Network for Dynamic Origin-Destination Prediction

被引:0
|
作者
Nathaniel, Juan [1 ]
Zheng, Baihua [2 ]
机构
[1] Columbia Univ, Sch Engn & Appl Sci, New York, NY 10027 USA
[2] Singapore Management Univ, Sch Comp & Informat Syst, Singapore, Singapore
关键词
Graph Convolutional Network (GCN); Markov Chain; public transportation; OD prediction; explainable AI (XAI);
D O I
10.1109/BigData52589.2021.9671752
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
A robust Origin-Destination (OD) prediction is key to urban mobility. A good forecasting model can reduce operational risks and improve service availability, among many other upsides. Here, we examine the use of Graph Convolutional Network (GCN) and its hybrid Markov-Chain (GCN-MC) variant to perform a context-aware OD prediction based on a large-scale public transportation dataset in Singapore. Compared with the baseline Markov-Chain algorithm and GCN, the proposed hybrid GCN-MC model improves the prediction accuracy by 37% and 12% respectively. Lastly, the addition of temporal and historical contextual information further improves the performance of the proposed hybrid model by 4 - 12%
引用
收藏
页码:1718 / 1724
页数:7
相关论文
共 50 条
  • [31] TBNet: a context-aware graph network for tuberculosis diagnosis
    Lu, Si-Yuan
    Wang, Shui-Hua
    Zhang, Xin
    Zhang, Yu-Dong
    [J]. COMPUTER METHODS AND PROGRAMS IN BIOMEDICINE, 2022, 214
  • [32] Graph Attention Network for Context-Aware Visual Tracking
    Shao, Yanyan
    Guo, Dongyan
    Cui, Ying
    Wang, Zhenhua
    Zhang, Liyan
    Zhang, Jianhua
    [J]. IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS, 2024,
  • [33] SELF-GROWING SPATIAL GRAPH NETWORK FOR CONTEXT-AWARE PEDESTRIAN TRAJECTORY PREDICTION
    Haddad, Sirin
    Lam, Siew-Kei
    [J]. 2021 IEEE INTERNATIONAL CONFERENCE ON IMAGE PROCESSING (ICIP), 2021, : 1029 - 1033
  • [34] Origin-Destination Matrix Prediction via Hexagon-based Generated Graph
    Yang, Yixuan
    Zhang, Shiyao
    Zhang, Chenhan
    Yu, James J. Q.
    [J]. 2021 IEEE INTELLIGENT TRANSPORTATION SYSTEMS CONFERENCE (ITSC), 2021, : 1399 - 1404
  • [35] Long-Term Origin-Destination Demand Prediction With Graph Deep Learning
    Zou, Xiexin
    Zhang, Shiyao
    Zhang, Chenhan
    Yu, James J. Q.
    Chung, Edward
    [J]. IEEE TRANSACTIONS ON BIG DATA, 2022, 8 (06) : 1481 - 1495
  • [36] A context-aware citation recommendation model with BERT and graph convolutional networks
    Jeong, Chanwoo
    Jang, Sion
    Park, Eunjeong
    Choi, Sungchul
    [J]. SCIENTOMETRICS, 2020, 124 (03) : 1907 - 1922
  • [37] A context-aware citation recommendation model with BERT and graph convolutional networks
    Chanwoo Jeong
    Sion Jang
    Eunjeong Park
    Sungchul Choi
    [J]. Scientometrics, 2020, 124 : 1907 - 1922
  • [38] Locality preserving dense graph convolutional networks with graph context-aware node representations
    Liu, Wenfeng
    Gong, Maoguo
    Tang, Zedong
    Qin, A. K.
    Sheng, Kai
    Xu, Mingliang
    [J]. NEURAL NETWORKS, 2021, 143 : 108 - 120
  • [39] Multi-Branch Convolutional Network for Context-Aware Recommendation
    Guo, Wei
    Zhang, Can
    Guo, Huifeng
    Tang, Ruiming
    He, Xiuqiang
    [J]. PROCEEDINGS OF THE 43RD INTERNATIONAL ACM SIGIR CONFERENCE ON RESEARCH AND DEVELOPMENT IN INFORMATION RETRIEVAL (SIGIR '20), 2020, : 1709 - 1712
  • [40] Efficient Context-Aware Graph Transformer for Vehicle Motion Prediction
    Gomez-Huelamo, Carlos
    Conde, Marcos V.
    Gutierrez-Moreno, Rodrigo
    Bareaa, Rafael
    Llamazares, Angel
    Antunes, Miguel
    Bergasa, Luis M.
    [J]. 2023 IEEE 26TH INTERNATIONAL CONFERENCE ON INTELLIGENT TRANSPORTATION SYSTEMS, ITSC, 2023, : 4133 - 4140