Context-Aware Graph Convolutional Network for Dynamic Origin-Destination Prediction

被引:0
|
作者
Nathaniel, Juan [1 ]
Zheng, Baihua [2 ]
机构
[1] Columbia Univ, Sch Engn & Appl Sci, New York, NY 10027 USA
[2] Singapore Management Univ, Sch Comp & Informat Syst, Singapore, Singapore
关键词
Graph Convolutional Network (GCN); Markov Chain; public transportation; OD prediction; explainable AI (XAI);
D O I
10.1109/BigData52589.2021.9671752
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
A robust Origin-Destination (OD) prediction is key to urban mobility. A good forecasting model can reduce operational risks and improve service availability, among many other upsides. Here, we examine the use of Graph Convolutional Network (GCN) and its hybrid Markov-Chain (GCN-MC) variant to perform a context-aware OD prediction based on a large-scale public transportation dataset in Singapore. Compared with the baseline Markov-Chain algorithm and GCN, the proposed hybrid GCN-MC model improves the prediction accuracy by 37% and 12% respectively. Lastly, the addition of temporal and historical contextual information further improves the performance of the proposed hybrid model by 4 - 12%
引用
收藏
页码:1718 / 1724
页数:7
相关论文
共 50 条
  • [1] Clustering Shift Graph Convolutional Network for Taxi Origin-Destination Demand Prediction
    Peng, Zhilei
    Wu, Guixing
    Xia, Fengliang
    [J]. 2021 IEEE 33RD INTERNATIONAL CONFERENCE ON TOOLS WITH ARTIFICIAL INTELLIGENCE (ICTAI 2021), 2021, : 268 - 272
  • [2] Origin-destination demand prediction of public transit using graph convolutional neural network
    Shanthappa, Nithin K.
    Mulangi, Raviraj H.
    Manjunath, Harsha M.
    [J]. CASE STUDIES ON TRANSPORT POLICY, 2024, 17
  • [3] Hyperspectral Image Classification With Context-Aware Dynamic Graph Convolutional Network
    Wan, Sheng
    Gong, Chen
    Zhong, Ping
    Pan, Shirui
    Li, Guangyu
    Yang, Jian
    [J]. IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2021, 59 (01): : 597 - 612
  • [4] Context-Aware Graph Convolutional Autoencoder
    Sattar, Asma
    Bacciu, Davide
    [J]. ADVANCES IN COMPUTATIONAL INTELLIGENCE, IWANN 2021, PT I, 2021, 12861 : 279 - 290
  • [5] Predicting Origin-Destination Flow via Multi-Perspective Graph Convolutional Network
    Shi, Hongzhi
    Yao, Quanming
    Guo, Qi
    Li, Yaguang
    Zhang, Lingyu
    Ye, Jieping
    Li, Yong
    Liu, Yan
    [J]. 2020 IEEE 36TH INTERNATIONAL CONFERENCE ON DATA ENGINEERING (ICDE 2020), 2020, : 1818 - 1821
  • [6] Dynamic Origin-Destination Matrix Prediction with Line Graph Neural Networks and Kalman Filter
    Xiong, Xi
    Ozbay, Kaan
    Jin, Li
    Feng, Chen
    [J]. TRANSPORTATION RESEARCH RECORD, 2020, 2674 (08) : 491 - 503
  • [7] Dynamic Auto-Structuring Graph Neural Network: A Joint Learning Framework for Origin-Destination Demand Prediction
    Zhang, Dapeng
    Xiao, Feng
    [J]. IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, 2023, 35 (04) : 3699 - 3711
  • [8] Spatial Origin-Destination Flow Imputation Using Graph Convolutional Networks
    Yao, Xin
    Gao, Yong
    Zhu, Di
    Manley, Ed
    Wang, Jiaoe
    Liu, Yu
    [J]. IEEE TRANSACTIONS ON INTELLIGENT TRANSPORTATION SYSTEMS, 2021, 22 (12) : 7474 - 7484
  • [9] Online Car-Hailing Origin-Destination Forecast Based on a Temporal Graph Convolutional Network
    Shuai, Chunyan
    Zhang, Xiaoqi
    Wang, Yuxiang
    He, Mingwei
    Yang, Fang
    Xu, Geng
    [J]. IEEE INTELLIGENT TRANSPORTATION SYSTEMS MAGAZINE, 2023, 15 (04) : 121 - 136
  • [10] A Dynamic and Static Context-Aware Attention Network for Trajectory Prediction
    Yu, Jian
    Zhou, Meng
    Wang, Xin
    Pu, Guoliang
    Cheng, Chengqi
    Chen, Bo
    [J]. ISPRS INTERNATIONAL JOURNAL OF GEO-INFORMATION, 2021, 10 (05)