Spectral Multiplicity for Maass Newforms of Non-Squarefree Level

被引:2
|
作者
Humphries, Peter [1 ]
机构
[1] UCL, Dept Math, Gower St, London WC1E 6BT, England
关键词
D O I
10.1093/imrn/rnx283
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We show that if a positive integer q has s(q) odd prime divisors p for which p(2) divides q, then a positive proportion of the Laplacian eigenvalues of Maass newforms of weight 0, level q, and principal character occur with multiplicity at least 2(s(q)). Consequently, the new part of the cuspidal spectrum of the Laplacian on Gamma(0)(q)\H cannot be simple for any odd non-squarefree integer q. This generalises work of Stromberg who proved this for q = 9 by different methods.
引用
收藏
页码:5703 / 5743
页数:41
相关论文
共 27 条