Higher congruences between newforms and Eisenstein series of squarefree level

被引:0
|
作者
Hsu, Catherine M. [1 ,2 ]
机构
[1] Univ Bristol, Sch Math, Bristol BS8 1TH, Avon, England
[2] Heilbronn Inst Math Res, Bristol, Avon, England
来源
关键词
Congruences between modular forms; Eisentein ideal;
D O I
暂无
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let p >= 5 be prime. For elliptic modular forms of weight 2 and level Gamma(0)(N) where N > 6 is squarefree, we bound the depth of Eisenstein congruences modulo p (from below) by a generalized Bernoulli number with correction factors and show how this depth detects the local non-principality of the Eisenstein ideal. We then use admissibility results of Ribet and Yoo to give an infinite class of examples where the Eisenstein ideal is not locally principal. Lastly, we illustrate these results with explicit computations and give an interesting commutative algebra application related to Hilbert-Samuel multiplicities.
引用
收藏
页码:503 / 525
页数:23
相关论文
共 50 条
  • [1] Newforms of squarefree level and theta series
    Ponomarev, Paul
    [J]. MATHEMATISCHE ANNALEN, 2009, 345 (01) : 185 - 193
  • [2] Newforms of squarefree level and theta series
    Paul Ponomarev
    [J]. Mathematische Annalen, 2009, 345 : 185 - 193
  • [3] On Higher Congruences Between Cusp Forms and Eisenstein Series
    Naskrecki, Bartosz
    [J]. COMPUTATIONS WITH MODULAR FORMS, 2014, 6 : 257 - 277
  • [4] The Eisenstein ideal with squarefree level
    Wake, Preston
    Wang-Erickson, Carl
    [J]. ADVANCES IN MATHEMATICS, 2021, 380
  • [5] CONGRUENCES BETWEEN EISENSTEIN SERIES IN SUPERSINGULAR CASE
    ROBERT, G
    [J]. INVENTIONES MATHEMATICAE, 1980, 61 (02) : 103 - 158
  • [6] Congruences with Eisenstein series and μ-invariants
    Bellaiche, Joel
    Pollack, Robert
    [J]. COMPOSITIO MATHEMATICA, 2019, 155 (05) : 863 - 901
  • [7] On the congruences of Eisenstein series with polynomial indexes
    Su Hu
    Min-Soo Kim
    Min Sha
    [J]. The Ramanujan Journal, 2023, 62 : 413 - 430
  • [8] Congruences for the coefficients of quotients of Eisenstein series
    Berndt, BC
    Yee, AJ
    [J]. ACTA ARITHMETICA, 2002, 104 (03) : 297 - 308
  • [9] Modular symbols, Eisenstein series, and congruences
    Heumann, Jay
    Vatsal, Vinayak
    [J]. JOURNAL DE THEORIE DES NOMBRES DE BORDEAUX, 2014, 26 (03): : 709 - 756
  • [10] On the congruences of Eisenstein series with polynomial indexes
    Hu, Su
    Kim, Min-Soo
    Sha, Min
    [J]. RAMANUJAN JOURNAL, 2023, 62 (02): : 413 - 430