Real-time Fraud Detection in e-Market Using Machine Learning Algorithms

被引:0
|
作者
Dong, Yanjiao [1 ,2 ]
Jiang, Zhengfeng [3 ]
Alazab, Mamoun [4 ]
Kumar, Priyan Malarvizhi [5 ]
机构
[1] Guilin Tourism Univ, Sch Business, Guilin 541006, Peoples R China
[2] City Univ Macau, Inst Data Sci, Macau, Peoples R China
[3] Guangxi Normal Univ Nationalities, Coll Math Phys & Elect Informat Engn, Chongzuo 532200, Peoples R China
[4] Charles Darwin Univ, IT & Environm, Casuarina, NT, Australia
[5] Kyung Hee Univ, Dept Comp Sci & Engn, Seoul, South Korea
关键词
Fraud detection; e-market; support vector machine; INTERNET;
D O I
暂无
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
An electronic market (e-market) is an online platform where people buy or sell products. Problems like fraud detection and illegal activity have risen together with the rising growth of the e-market. The efficacy of the fraud prevention methods of purchases has a significant bearing on the depletion of internet customers. Therefore in this paper, a support vector machine-based fraud detection framework (SVM-FDF) has been proposed for detecting real-time fraud in the e-market. FD framework is implemented to spread prominence from a limited marketing scheme for beginning consumers is invariably used to update their credibility when an offering is applied to the e-market. The comportment features of all existing regular cases and fraud specimens are derived via the clustering algorithm to form the general conduct of the present community of the e-market. Each conduct's findings demonstrate that the SVM model is employed to evaluate whether all the present transaction is corrupted or fraud. The simulation results show that the suggested SVM-FDF model enhances the precision rate of 98.8%, recall rate of 97.7%, the f1-score ratio of 96.7%, accuracy ratio of 96.8%, and decreases the error rate of 20.9% compared to other existing approaches.
引用
收藏
页码:191 / 209
页数:19
相关论文
共 50 条
  • [21] Practical real-time intrusion detection using machine learning approaches
    Sangkatsanee, Phurivit
    Wattanapongsakorn, Naruemon
    Charnsripinyo, Chalermpol
    COMPUTER COMMUNICATIONS, 2011, 34 (18) : 2227 - 2235
  • [22] Real-Time Framework for Malware Detection Using Machine Learning Technique
    Mukesh, Sharma Divya
    Raval, Jigar A.
    Upadhyay, Hardik
    INFORMATION AND COMMUNICATION TECHNOLOGY FOR INTELLIGENT SYSTEMS (ICTIS 2017) - VOL 1, 2018, 83 : 173 - 182
  • [23] HarX: Real-time harassment detection tool using machine learning
    Rizwan, Kainat
    Babar, Sehar
    Nayab, Sania
    Hanif, Muhammad Kashif
    2021 INTERNATIONAL CONFERENCE OF MODERN TRENDS IN INFORMATION AND COMMUNICATION TECHNOLOGY INDUSTRY (MTICTI 2021), 2021, : 66 - 71
  • [24] Real-Time Detection System of Driver Distraction Using Machine Learning
    Tango, Fabio
    Botta, Marco
    IEEE TRANSACTIONS ON INTELLIGENT TRANSPORTATION SYSTEMS, 2013, 14 (02) : 894 - 905
  • [25] Force Sensitive Resistors-Based Real-Time Posture Detection System Using Machine Learning Algorithms
    Javaid, Arsal
    Abbas, Areeb
    Arshad, Jehangir
    Rahmani, Mohammad Khalid Imam
    Chauhdary, Sohaib Tahir
    Jaffery, Mujtaba Hussain
    Banga, Abdulbasid S.
    CMC-COMPUTERS MATERIALS & CONTINUA, 2023, 77 (02): : 1795 - 1814
  • [26] Real-Time Public Transportation Prediction with Machine Learning Algorithms
    Panovski, Dancho
    Zaharia, Titus
    2020 IEEE INTERNATIONAL CONFERENCE ON CONSUMER ELECTRONICS (ICCE), 2020, : 504 - 507
  • [27] Machine Learning Algorithms for Document Clustering and Fraud Detection
    Yaram, Suresh
    PROCEEDINGS OF THE 2016 INTERNATIONAL CONFERENCE ON DATA SCIENCE & ENGINEERING (ICDSE), 2016, : 103 - 108
  • [28] MACHINE LEARNING ALGORITHMS FOR AUTO INSURANCE FRAUD DETECTION
    Badal Valero, Elena
    Sanjuan Diaz, Andres
    Segura Gisbert, Jorge
    ANALES DEL INSTITUTO DE ACTUARIOS ESPANOLES, 2020, (26): : 23 - 46
  • [29] A Machine Learning Method for Prediction of Stock Market Using Real-Time Twitter Data
    Albahli, Saleh
    Irtaza, Aun
    Nazir, Tahira
    Mehmood, Awais
    Alkhalifah, Ali
    Albattah, Waleed
    ELECTRONICS, 2022, 11 (20)
  • [30] Panic Detection Using Machine Learning and Real-Time Biometric and Spatiotemporal Data
    Lazarou, Ilias
    Kesidis, Anastasios L.
    Hloupis, George
    Tsatsaris, Andreas
    ISPRS INTERNATIONAL JOURNAL OF GEO-INFORMATION, 2022, 11 (11)