Analytical Solutions of the Diffusion-Wave Equation of Groundwater Flow with Distributed-Order of Atangana-Baleanu Fractional Derivative

被引:2
|
作者
Shah, Nehad Ali [1 ,2 ]
Rauf, Abdul [3 ]
Vieru, Dumitru [4 ]
Sitthithakerngkiet, Kanokwan [5 ]
Kumam, Poom [6 ,7 ]
机构
[1] Ton Duc Thang Univ, Informetr Res Grp, Ho Chi Minh City 700000, Vietnam
[2] Ton Duc Thang Univ, Fac Math & Stat, Ho Chi Minh City 700000, Vietnam
[3] Air Univ Multan Campus, Dept Comp Sci & Math, Multan 60000, Pakistan
[4] Tech Univ Iasi, Dept Theoret Mech, Iasi 700050, Romania
[5] King Mongkuts Univ Technol North Bangkok KMUTNB, Dept Math, Fac Sci Appl, Intelligent & Nonlinear Dynam Innovat Res Ctr, Bangkok 10140, Thailand
[6] King Mongkuts Univ Technol Thonburi KMUTT, Fac Sci, Dept Math, 126 Pracha Uthit Rd, Bangkok 10140, Thailand
[7] China Med Univ, China Med Univ Hosp, Dept Med Res, Taichung 40402, Taiwan
来源
APPLIED SCIENCES-BASEL | 2021年 / 11卷 / 09期
关键词
radial diffusion– wave equation; fractional derivative; distributed-order; integral transforms; MODEL; INFILTRATION; TRANSFORM; MEMORY; TESTS; SOILS;
D O I
10.3390/app11094142
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
A generalized mathematical model of the radial groundwater flow to or from a well is studied using the time-fractional derivative with Mittag-Lefler kernel. Two temporal orders of fractional derivatives which characterize small and large pores are considered in the fractional diffusion-wave equation. New analytical solutions to the distributed-order fractional diffusion-wave equation are determined using the Laplace and Dirichlet-Weber integral transforms. The influence of the fractional parameters on the radial groundwater flow is analyzed by numerical calculations and graphical illustrations are obtained with the software Mathcad.
引用
收藏
页数:13
相关论文
共 50 条
  • [1] Analytical solutions to the advection-diffusion equation with Atangana-Baleanu time-fractional derivative and a concentrated loading
    Mirza, Itrat Abbas
    Akram, Muhammad Saeed
    Shah, Nehad Ali
    Imtiaz, Waqas
    Chung, Jae Dong
    ALEXANDRIA ENGINEERING JOURNAL, 2021, 60 (01) : 1199 - 1208
  • [2] The distributed-order fractional diffusion-wave equation of groundwater flow: Theory and application to pumping and slug tests
    Su, Ninghu
    Nelson, Paul N.
    Connor, Sarah
    JOURNAL OF HYDROLOGY, 2015, 529 : 1262 - 1273
  • [4] Atangana-Baleanu derivative with fractional order applied to the model of groundwater within an unconfined aquifer
    Alqahtani, Rubayyi T.
    JOURNAL OF NONLINEAR SCIENCES AND APPLICATIONS, 2016, 9 (06): : 3647 - 3654
  • [5] Numerical Analysis of Fractional-Order Parabolic Equation Involving Atangana-Baleanu Derivative
    Alesemi, Meshari
    SYMMETRY-BASEL, 2023, 15 (01):
  • [6] New idea of Atangana-Baleanu time-fractional derivative to advection-diffusion equation
    Tlili, Iskander
    Shah, Nehad Ali
    Ullah, Saif
    Manzoor, Humera
    MATHEMATICAL METHODS IN THE APPLIED SCIENCES, 2021, 44 (03) : 2521 - 2531
  • [7] On the fuzzy fractional differential equation with interval Atangana-Baleanu fractional derivative approach
    Allahviranloo, Tofigh
    Ghanbari, Behzad
    CHAOS SOLITONS & FRACTALS, 2020, 130
  • [8] Approximate solutions of Atangana-Baleanu variable order fractional problems
    Li, Xiuying
    Gao, Yang
    Wu, Boying
    AIMS MATHEMATICS, 2020, 5 (03): : 2285 - 2294
  • [9] Chua's circuit model with Atangana-Baleanu derivative with fractional order
    Alkahtani, Badr Saad T.
    CHAOS SOLITONS & FRACTALS, 2016, 89 : 547 - 551
  • [10] Numerical Solution of Fractional-Order Fredholm Integrodifferential Equation in the Sense of Atangana-Baleanu Derivative
    Wang, Jian
    Kamran
    Jamal, Ayesha
    Li, Xuemei
    MATHEMATICAL PROBLEMS IN ENGINEERING, 2021, 2021