Automated Machine Learning for High-Throughput Image-Based Plant Phenotyping

被引:51
|
作者
Koh, Joshua C. O. [1 ]
Spangenberg, German [2 ,3 ]
Kant, Surya [1 ,4 ]
机构
[1] Agr Victoria, Grains Innovat Pk,110 Natimuk Rd, Horsham, Vic 3400, Australia
[2] AgriBio, Agr Victoria, Ctr AgriBiosci, 5 Ring Rd, Bundoora, Vic 3083, Australia
[3] La Trobe Univ, Sch Appl Syst Biol, Bundoora, Vic 3083, Australia
[4] Univ Melbourne, Ctr Agr Innovat, Sch Agr & Food, Fac Vet & Agr Sci, Melbourne, Vic 3010, Australia
关键词
automated machine learning; neural architecture search; high-throughput plant phenotyping; wheat lodging assessment; unmanned aerial vehicle; ARCHITECTURES; DEPTH; RGB;
D O I
10.3390/rs13050858
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
Automated machine learning (AutoML) has been heralded as the next wave in artificial intelligence with its promise to deliver high-performance end-to-end machine learning pipelines with minimal effort from the user. However, despite AutoML showing great promise for computer vision tasks, to the best of our knowledge, no study has used AutoML for image-based plant phenotyping. To address this gap in knowledge, we examined the application of AutoML for image-based plant phenotyping using wheat lodging assessment with unmanned aerial vehicle (UAV) imagery as an example. The performance of an open-source AutoML framework, AutoKeras, in image classification and regression tasks was compared to transfer learning using modern convolutional neural network (CNN) architectures. For image classification, which classified plot images as lodged or non-lodged, transfer learning with Xception and DenseNet-201 achieved the best classification accuracy of 93.2%, whereas AutoKeras had a 92.4% accuracy. For image regression, which predicted lodging scores from plot images, transfer learning with DenseNet-201 had the best performance (R-2 = 0.8303, root mean-squared error (RMSE) = 9.55, mean absolute error (MAE) = 7.03, mean absolute percentage error (MAPE) = 12.54%), followed closely by AutoKeras (R-2 = 0.8273, RMSE = 10.65, MAE = 8.24, MAPE = 13.87%). In both tasks, AutoKeras models had up to 40-fold faster inference times compared to the pretrained CNNs. AutoML has significant potential to enhance plant phenotyping capabilities applicable in crop breeding and precision agriculture.
引用
收藏
页码:1 / 19
页数:17
相关论文
共 50 条
  • [1] An automated, high-throughput plant phenotyping system using machine learning based plant segmentation and image analysis
    Lee, Unseok
    Chang, Sungyul
    Putra, Gian Anantrio
    Kim, Hyoungseok
    Kim, Dong Hwan
    PLOS ONE, 2018, 13 (04):
  • [2] An automated, high-throughput method for standardizing image color profiles to improve image-based plant phenotyping
    Berry, Jeffrey C.
    Fahlgren, Noah
    Pokorny, Alexandria A.
    Bart, Rebecca S.
    Veley, Kira M.
    PEERJ, 2018, 6
  • [3] Use of image-based automated high-throughput screening bioassays and integrative phenotyping in plant biotechnology
    Spichal, Lukas
    Humplik, Jan
    De Diego, Nuria
    Furst, Tomas
    NEW BIOTECHNOLOGY, 2016, 33 : S24 - S24
  • [4] Convolutional Neural Networks for Image-Based High-Throughput Plant Phenotyping: A Review
    Jiang, Yu
    Li, Changying
    PLANT PHENOMICS, 2020, 2020
  • [5] Image-Based High-Throughput Phenotyping in Horticultural Crops
    Abebe, Alebel Mekuriaw
    Kim, Younguk
    Kim, Jaeyoung
    Kim, Song Lim
    Baek, Jeongho
    PLANTS-BASEL, 2023, 12 (10):
  • [6] Image-Based High-Throughput Field Phenotyping of Crop Roots
    Bucksch, Alexander
    Burridge, James
    York, Larry M.
    Das, Abhiram
    Nord, Eric
    Weitz, Joshua S.
    Lynch, Jonathan P.
    PLANT PHYSIOLOGY, 2014, 166 (02) : 470 - 486
  • [7] Development of a mobile, high-throughput, and low-cost image-based plant growth phenotyping system
    Yu, Li'ang
    Sussman, Hayley
    Khmelnitsky, Olga
    Ishka, Maryam Rahmati
    Srinivasan, Aparna
    Nelson, Andrew D. L.
    Julkowska, Magdalena M.
    PLANT PHYSIOLOGY, 2024, 196 (02) : 810 - 829
  • [8] Resources for image-based high-throughput phenotyping in crops and data sharing challenges
    Danilevicz, Monica F.
    Bayer, Philipp E.
    Nestor, Benjamin J.
    Bennamoun, Mohammed
    Edwards, David
    PLANT PHYSIOLOGY, 2021, 187 (02) : 699 - 715
  • [9] Leveraging Image Analysis for High-Throughput Plant Phenotyping
    Choudhury, Sruti Das
    Samal, Ashok
    Awada, Tala
    FRONTIERS IN PLANT SCIENCE, 2019, 10
  • [10] Deep Learning in Image-Based Plant Phenotyping
    Murphy, Katherine M.
    Ludwig, Ella
    Gutierrez, Jorge
    Gehan, Malia A.
    ANNUAL REVIEW OF PLANT BIOLOGY, 2024, 75 : 771 - 795