VEHiCLE: a Variationally Encoded Hi-C Loss Enhancement algorithm for improving and generating Hi-C data

被引:8
|
作者
Highsmith, Max [1 ]
Cheng, Jianlin [1 ]
机构
[1] Univ Missouri, Dept Elect Engn & Comp Sci, Columbia, MO 65211 USA
关键词
GENOME; REPRODUCIBILITY; PRINCIPLES; CHROMOSOME; RESOLUTION;
D O I
10.1038/s41598-021-88115-9
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Chromatin conformation plays an important role in a variety of genomic processes. Hi-C is one of the most popular assays for inspecting chromatin conformation. However, the utility of Hi-C contact maps is bottlenecked by resolution. Here we present VEHiCLE, a deep learning algorithm for resolution enhancement of Hi-C contact data. VEHiCLE utilises a variational autoencoder and adversarial training strategy equipped with four loss functions (adversarial loss, variational loss, chromosome topology-inspired insulation loss, and mean square error loss) to enhance contact maps, making them more viable for downstream analysis. VEHiCLE expands previous efforts at Hi-C super resolution by providing novel insight into the biologically meaningful and human interpretable feature extraction. Using a deep variational autoencoder, VEHiCLE provides a user tunable, full generative model for generating synthetic Hi- C data while also providing state-of-the-art results in enhancement of Hi-C data across multiple metrics.
引用
收藏
页数:13
相关论文
共 50 条
  • [1] VEHiCLE: a Variationally Encoded Hi-C Loss Enhancement algorithm for improving and generating Hi-C data
    Max Highsmith
    Jianlin Cheng
    [J]. Scientific Reports, 11
  • [2] covNorm: An R package for coverage based normalization of Hi-C and capture Hi-C data
    Kim, Kyukwang
    Jung, Inkyung
    [J]. COMPUTATIONAL AND STRUCTURAL BIOTECHNOLOGY JOURNAL, 2021, 19 : 3149 - 3159
  • [3] y Computational Processing and Quality Control of Hi-C, Capture Hi-C and Capture-C Data
    Hansen, Peter
    Gargano, Michael
    Hecht, Jochen
    Ibn-Salem, Jonas
    Karlebach, Guy
    Roehr, Johannes T.
    Robinson, Peter N.
    [J]. GENES, 2019, 10 (07):
  • [4] Galaxy HiCExplorer 3: a web server for reproducible Hi-C, capture Hi-C and single-cell Hi-C data analysis, quality control and visualization
    Wolff, Joachim
    Rabbani, Leily
    Gilsbach, Ralf
    Richard, Gautier
    Manke, Thomas
    Backofen, Rolf
    Gruening, Bjoern A.
    [J]. NUCLEIC ACIDS RESEARCH, 2020, 48 (W1) : W177 - W184
  • [5] Software tools for visualizing Hi-C data
    Galip Gürkan Yardımcı
    William Stafford Noble
    [J]. Genome Biology, 18
  • [6] Measuring the reproducibility and quality of Hi-C data
    Galip Gürkan Yardımcı
    Hakan Ozadam
    Michael E. G. Sauria
    Oana Ursu
    Koon-Kiu Yan
    Tao Yang
    Abhijit Chakraborty
    Arya Kaul
    Bryan R. Lajoie
    Fan Song
    Ye Zhan
    Ferhat Ay
    Mark Gerstein
    Anshul Kundaje
    Qunhua Li
    James Taylor
    Feng Yue
    Job Dekker
    William S. Noble
    [J]. Genome Biology, 20
  • [7] Measuring the reproducibility and quality of Hi-C data
    Yardimci, Galip Gurkan
    Ozadam, Hakan
    Sauria, Michael E. G.
    Ursu, Oana
    Yan, Koon-Kiu
    Yang, Tao
    Chakraborty, Abhijit
    Kaul, Arya
    Lajoie, Bryan R.
    Song, Fan
    Zhan, Ye
    Ay, Ferhat
    Gerstein, Mark
    Kundaje, Anshul
    Li, Qunhua
    Taylor, James
    Yue, Feng
    Dekker, Job
    Noble, William S.
    [J]. GENOME BIOLOGY, 2019, 20 (1)
  • [8] A cookbook for DNase Hi-C
    Gridina, Maria
    Mozheiko, Evgeniy
    Valeev, Emil
    Nazarenko, Ludmila P.
    Lopatkina, Maria E.
    Markova, Zhanna G.
    Yablonskaya, Maria I.
    Voinova, Viktoria Yu
    Shilova, Nadezhda V.
    Lebedev, Igor N.
    Fishman, Veniamin
    [J]. EPIGENETICS & CHROMATIN, 2021, 14 (01)
  • [9] A cookbook for DNase Hi-C
    Maria Gridina
    Evgeniy Mozheiko
    Emil Valeev
    Ludmila P. Nazarenko
    Maria E. Lopatkina
    Zhanna G. Markova
    Maria I. Yablonskaya
    Viktoria Yu Voinova
    Nadezhda V. Shilova
    Igor N. Lebedev
    Veniamin Fishman
    [J]. Epigenetics & Chromatin, 14
  • [10] Software tools for visualizing Hi-C data
    Yardimci, Galip Gurkan
    Noble, William Stafford
    [J]. GENOME BIOLOGY, 2017, 18