Discontinuous Galerkin Difference Methods for Symmetric Hyperbolic Systems

被引:7
|
作者
Hagstrom, T. [1 ]
Banks, J. W. [2 ]
Buckner, B. B. [2 ]
Juhnke, K. [3 ]
机构
[1] Southern Methodist Univ, Dept Math, Dallas, TX 75205 USA
[2] Rensselaer Polytech Inst, Troy, NY USA
[3] Bethel Coll, North Newton, KS USA
关键词
Difference methods; Galerkin methods; Hyperbolic systems; PERFECTLY MATCHED LAYERS; BOUNDARY-CONDITIONS; STRICT STABILITY; SCHEMES; SUMMATION; ACCURACY; PARTS; APPROXIMATIONS; EQUATIONS; PDES;
D O I
10.1007/s10915-019-01070-6
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We develop dissipative, energy-stable difference methods for linear first-order hyperbolic systems by applying an upwind, discontinuous Galerkin construction of derivative matrices to a space of discontinuous piecewise polynomials on a structured mesh. The space is spanned by translates of a function spanning multiple cells, yielding a class of implicit difference formulas of arbitrary order. We examine the properties of the method, including the scaling of the derivative operator with method order, and demonstrate its accuracy for problems in one and two space dimensions.
引用
收藏
页码:1509 / 1526
页数:18
相关论文
共 50 条
  • [31] The devising of symmetric couplings of boundary element and discontinuous Galerkin methods
    Cockburn, Bernardo
    Sayas, Francisco-Javier
    IMA JOURNAL OF NUMERICAL ANALYSIS, 2012, 32 (03) : 765 - 794
  • [32] Multigrid algorithms for symmetric discontinuous Galerkin methods on graded meshes
    S. C. Brenner
    J. Cui
    T. Gudi
    L.-Y. Sung
    Numerische Mathematik, 2011, 119 : 21 - 47
  • [33] DISCONTINUOUS GALERKIN ERROR ESTIMATION FOR LINEAR SYMMETRIZABLE HYPERBOLIC SYSTEMS
    Adjerid, Slimane
    Weinhart, Thomas
    MATHEMATICS OF COMPUTATION, 2011, 80 (275) : 1335 - 1367
  • [34] An upwind-like discontinuous Galerkin method for hyperbolic systems
    Zhang, Tie
    Yu, Shun
    APPLIED MATHEMATICS AND COMPUTATION, 2013, 219 (16) : 8610 - 8621
  • [35] Multigrid algorithms for symmetric discontinuous Galerkin methods on graded meshes
    Brenner, S. C.
    Cui, J.
    Gudi, T.
    Sung, L. -Y.
    NUMERISCHE MATHEMATIK, 2011, 119 (01) : 21 - 47
  • [36] Discontinuous Galerkin Methods for Distributed Control Problems of a Scalar Hyperbolic Equation
    Chang Lili
    Gong Wei
    Yan Ningning
    PROCEEDINGS OF THE 29TH CHINESE CONTROL CONFERENCE, 2010, : 6052 - 6055
  • [37] SUPERCONVERGENCE OF DISCONTINUOUS GALERKIN METHODS FOR TWO-DIMENSIONAL HYPERBOLIC EQUATIONS
    Cao, Waixiang
    Shu, Chi-Wang
    Yang, Yang
    Zhang, Zhimin
    SIAM JOURNAL ON NUMERICAL ANALYSIS, 2015, 53 (04) : 1651 - 1671
  • [38] Minimal stabilization for discontinuous galerkin finite element methods for hyperbolic problems
    Burman, E.
    Stamm, B.
    JOURNAL OF SCIENTIFIC COMPUTING, 2007, 33 (02) : 183 - 208
  • [39] Reconstructed Discontinuous Galerkin Methods for Hyperbolic Diffusion Equations on Unstructured Grids
    Lou, Jialin
    Liu, Xiaodong
    Luo, Hong
    Nishikawa, Hiroaki
    COMMUNICATIONS IN COMPUTATIONAL PHYSICS, 2019, 25 (05) : 1302 - 1327
  • [40] Minimal Stabilization for Discontinuous Galerkin Finite Element Methods for Hyperbolic Problems
    E. Burman
    B. Stamm
    Journal of Scientific Computing, 2007, 33 : 183 - 208