On consistent fusion of multimodal biometrics

被引:0
|
作者
Kung, S. Y. [1 ]
Mak, Man-Wai [1 ]
机构
[1] Princeton Univ, Dept Elect Engn, Princeton, NJ 08544 USA
关键词
D O I
暂无
中图分类号
O42 [声学];
学科分类号
070206 ; 082403 ;
摘要
Audio-visual (AV) biometrics offer complementary information sources, and the use of both voice and facial images for biometric authentication has recently become economically feasible. Therefore, multi-modality adaptive fusion, combining audio and visual information, offers an efficient tool for substantially improving the classification performance. In terms of implementation, we propose to integrate an audio classifier (based on Gaussian mixture models) and a visual classifier (based on FaceIT, a commercially available software) into a well-established mixture-of-expert fusion architecture. In addition, a consistent fusion strategy is introduced as a baseline fusion scheme, which establishes the lower bound of the "consistent region" in the FAR-FRR ROC. Our simulation results indicate that the prediction performance of the proposed adaptive fusion schemes fall in the consistent region. More importantly, the notion of consistent fusion can also facilitate the selection of the best modalities to fuse.
引用
收藏
页码:5943 / 5946
页数:4
相关论文
共 50 条
  • [31] Analyzing State-of-the-Art Techniques for Fusion of Multimodal Biometrics
    Fernandes, Steven Lawrence
    Bala, G. Josemin
    [J]. PROCEEDINGS OF THE SECOND INTERNATIONAL CONFERENCE ON COMPUTER AND COMMUNICATION TECHNOLOGIES, IC3T 2015, VOL 3, 2016, 381 : 473 - 478
  • [32] Rank level fusion of multimodal biometrics using genetic algorithm
    Ahmad, Shadab
    Pal, Rajarshi
    Ganivada, Avatharam
    [J]. MULTIMEDIA TOOLS AND APPLICATIONS, 2022, 81 (28) : 40931 - 40958
  • [33] Score level fusion of multimodal biometrics using triangular norms
    Hanmandlu, Madasu
    Grover, Jyotsana
    Gureja, Ankit
    Gupta, H. M.
    [J]. PATTERN RECOGNITION LETTERS, 2011, 32 (14) : 1843 - 1850
  • [34] DISCRIMINANT CORRELATION ANALYSIS FOR FEATURE LEVEL FUSION WITH APPLICATION TO MULTIMODAL BIOMETRICS
    Haghighat, M.
    Abdel-Mottaleb, M.
    Alhalabi, W.
    [J]. 2016 IEEE INTERNATIONAL CONFERENCE ON ACOUSTICS, SPEECH AND SIGNAL PROCESSING PROCEEDINGS, 2016, : 1866 - 1870
  • [35] Template security scheme for multimodal biometrics using data fusion technique
    Bokade, Gayatri U.
    Kanphade, Rajendra D.
    [J]. INTERNATIONAL JOURNAL OF BIOMETRICS, 2022, 14 (02) : 166 - 190
  • [36] PROTECT Multimodal DB: fusion evaluation on a novel multimodal biometrics dataset envisaging Border Control
    Sequeira, Ana F.
    Chen, Lulu
    Ferryman, James
    Galdi, Chiara
    Chiesa, Valeria
    Dugelay, Jean-Luc
    Maik, Patryk
    Gmitrowicz, Piotr
    Szklarski, Lukasz
    Prommegger, Bernhard
    Kauba, Christof
    Kirchgasser, Simon
    Uhl, Andreas
    Grudzie, Artur
    Kowalski, Marcin
    [J]. 2018 INTERNATIONAL CONFERENCE OF THE BIOMETRICS SPECIAL INTEREST GROUP (BIOSIG), 2018,
  • [37] Multimodal biometric authentication based on score level fusion of finger biometrics
    Peng, Jialiang
    Abd El-Latif, Ahmed A.
    Li, Qiong
    Niu, Xiamu
    [J]. OPTIK, 2014, 125 (23): : 6891 - 6897
  • [38] Adaptive management of multimodal biometrics fusion using ant colony optimization
    Kumar, Amioy
    Kumar, Ajay
    [J]. INFORMATION FUSION, 2016, 32 : 49 - 63
  • [39] An Efficient Technique of Multimodal Biometrics using fusion of Face and Iris features
    Dakre, Vaibhav V.
    Gawande, Pravin G.
    [J]. 2016 CONFERENCE ON ADVANCES IN SIGNAL PROCESSING (CASP), 2016, : 231 - 236
  • [40] Non-stationary feature fusion of face and palmprint multimodal biometrics
    Ahmad, Muhammad Imran
    Woo, Wai Lok
    Dlay, Satnam
    [J]. NEUROCOMPUTING, 2016, 177 : 49 - 61