Uniform Decay of Solutions for von Karman Equations of Dynamic Viscoelasticity with Memory

被引:5
|
作者
Park, Jong Yeoul [1 ]
Kang, Jum Ran [1 ]
机构
[1] Pusan Natl Univ, Dept Math, Pusan 609735, South Korea
关键词
Viscoelasticity; Von Karman system; Boundary dissipation; Exponential decay; Galerkin approximation; Memory term; THERMOELASTIC PLATES; WAVE-EQUATION; BOUNDARY; RATES;
D O I
10.1007/s10440-009-9520-7
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we consider the dynamical von Karman equations for viscoelastic plates with nonlinear boundary dissipation. We show the existence of solutions using the Galerkin method and then prove the asymptotic behaviour of the corresponding solutions by choosing suitable Lyapunov functional.
引用
收藏
页码:1461 / 1474
页数:14
相关论文
共 50 条
  • [41] Generalized von Karman equations
    Ciarlet, PG
    Gratie, L
    JOURNAL DE MATHEMATIQUES PURES ET APPLIQUEES, 2001, 80 (03): : 263 - 279
  • [42] On nonstationary von Karman equations
    Bock, I
    ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND MECHANIK, 1996, 76 (10): : 559 - 571
  • [43] General decay for a von Karman equation of memory type with acoustic boundary conditions
    Sun Hye Park
    Jong Yeoul Park
    Yong Han Kang
    Zeitschrift für angewandte Mathematik und Physik, 2012, 63 : 813 - 823
  • [44] A GENERAL DECAY RESULT FOR A VON KARMAN EQUATION WITH MEMORY AND ACOUSTIC BOUNDARY CONDITIONS
    Park, Sun-Hye
    JOURNAL OF APPLIED ANALYSIS AND COMPUTATION, 2022, 12 (01): : 17 - 30
  • [45] General decay for a von Karman equation with memory and time-varying delay
    Kang, Jum-Ran
    APPLIED MATHEMATICS LETTERS, 2021, 122
  • [46] General decay for a von Karman equation of memory type with acoustic boundary conditions
    Park, Sun Hye
    Park, Jong Yeoul
    Kang, Yong Han
    ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND PHYSIK, 2012, 63 (05): : 813 - 823
  • [47] Existence and sharp decay rate estimates for a von Karman system with long memory
    Cavalcanti, Marcelo M.
    Cavalcanti, Andre D. D.
    Lasiecka, Irena
    Wang, Xiaojun
    NONLINEAR ANALYSIS-REAL WORLD APPLICATIONS, 2015, 22 : 289 - 306
  • [48] Conservation laws and group-invariant solutions of the von Karman equations
    Djondjorov, PA
    Vassilev, VM
    INTERNATIONAL JOURNAL OF NON-LINEAR MECHANICS, 1996, 31 (01) : 73 - 87
  • [49] Some remarks on radial solutions of Foppl-von Karman equations
    El Doussouki, A.
    Guedda, M.
    Jazar, M.
    Benlahsen, M.
    APPLIED MATHEMATICS AND COMPUTATION, 2013, 219 (09) : 4340 - 4345
  • [50] A REMARK ON THE EXISTENCE OF NONTRIVIAL SOLUTIONS TO THE MARGUERRE-VON KARMAN EQUATIONS
    KAVIAN, O
    RAO, BP
    COMPTES RENDUS DE L ACADEMIE DES SCIENCES SERIE I-MATHEMATIQUE, 1993, 317 (12): : 1137 - 1142