Using a Relational Database to Index Infectious Disease Information

被引:1
|
作者
Brown, Jay A. [1 ]
机构
[1] Natl Lib Med, Specialized Informat Serv, Bethesda, MD 20892 USA
关键词
decision support; relational database; infectious diseases; public health informatics; early detection; differential diagnosis; indexing information; knowledge mapping; PUBLIC-HEALTH MANAGEMENT; BIOLOGICAL WEAPON; COMPUTER-PROGRAM; BIOTERRORISM; DIAGNOSIS; FEVER; PATIENT; ANTHRAX; GIDEON;
D O I
10.3390/ijerph7052177
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
Mapping medical knowledge into a relational database became possible with the availability of personal computers and user-friendly database software in the early 1990s. To create a database of medical knowledge, the domain expert works like a mapmaker to first outline the domain and then add the details, starting with the most prominent features. The resulting "intelligent database" can support the decisions of healthcare professionals. The intelligent database described in this article contains profiles of 275 infectious diseases. Users can query the database for all diseases matching one or more specific criteria (symptom, endemic region of the world, or epidemiological factor). Epidemiological factors include sources (patients, water, soil, or animals), routes of entry, and insect vectors. Medical and public health professionals could use such a database as a decision-support software tool.
引用
收藏
页码:2177 / 2190
页数:14
相关论文
共 50 条
  • [41] Using a search engine to query a relational database
    Hanington, Brian
    Brazile, Robert
    Swigger, Kathleen
    [J]. PROCEEDINGS OF THE 2008 IEEE INTERNATIONAL CONFERENCE ON INFORMATION REUSE AND INTEGRATION, 2008, : 11 - +
  • [42] Sequence comparison using a relational database approach
    Bergholz, A
    Heymann, S
    Schenk, JA
    Freytag, JC
    [J]. IDEAS '97 - INTERNATIONAL DATABASE ENGINEERING AND APPLICATIONS SYMPOSIUM, PROCEEDINGS, 1997, : 126 - 131
  • [43] Querying Heterogeneous Relational Database using SPARQL
    Wang, Jinpeng
    Miao, Zhuang
    Zhang, Yafei
    Zhou, Bo
    [J]. PROCEEDINGS OF THE 8TH IEEE/ACIS INTERNATIONAL CONFERENCE ON COMPUTER AND INFORMATION SCIENCE, 2009, : 475 - 480
  • [44] Using UML to model relational database operations
    Song, Eunjee
    Yin, Shuxin
    Ray, Indrakshi
    [J]. COMPUTER STANDARDS & INTERFACES, 2007, 29 (03) : 343 - 354
  • [45] Normalizing relational database schemas using Mathematica
    Yazici, Ali
    Karakaya, Ziya
    [J]. COMPUTATIONAL SCIENCE - ICCS 2006, PT 2, PROCEEDINGS, 2006, 3992 : 375 - 382
  • [46] An extensible framework and database of infectious disease for biosurveillance
    Daughton, Ashlynn R.
    Priedhorsky, Reid
    Fairchild, Geoffrey
    Generous, Nicholas
    Hengartner, Andrea
    Abeyta, Esteban
    Velappan, Nileena
    Lillo, Antonietta
    Stark, Karen
    Deshpande, Alina
    [J]. BMC INFECTIOUS DISEASES, 2017, 17
  • [47] Using a relational database for scalable XML search
    Rebecca J. Cathey
    Steven M. Beitzel
    Eric C. Jensen
    David Grossman
    Ophir Frieder
    [J]. The Journal of Supercomputing, 2008, 44 : 146 - 178
  • [48] Graph Analytics using Vertica Relational Database
    Jindal, Alekh
    Madden, Samuel
    Castellanos, Malu
    Hsu, Meichun
    [J]. PROCEEDINGS 2015 IEEE INTERNATIONAL CONFERENCE ON BIG DATA, 2015, : 1191 - 1200
  • [49] Using a relational database to support nursing research
    Boyington, AR
    Tomlinson, BU
    Dougherty, MC
    [J]. COMPUTERS IN NURSING, 1999, 17 (06) : 269 - 274
  • [50] An extensible framework and database of infectious disease for biosurveillance
    Ashlynn R. Daughton
    Reid Priedhorsky
    Geoffrey Fairchild
    Nicholas Generous
    Andrea Hengartner
    Esteban Abeyta
    Nileena Velappan
    Antonietta Lillo
    Karen Stark
    Alina Deshpande
    [J]. BMC Infectious Diseases, 17