Sieve maximum likelihood estimation for doubly semiparametric zero-inflated Poisson models

被引:16
|
作者
He, Xuming
Xue, Hongqi
Shi, Ning-Zhong
机构
[1] Univ Illinois, Dept Stat, Urbana, IL 61801 USA
[2] Univ Rochester, Dept Biostat & Computat Biol, Rochester, NY 14627 USA
基金
中国国家自然科学基金;
关键词
Asymptotic efficiency; Partly linear model; Sieve maximum likelihood estimator; Zero-inflated Poisson model; COUNT DATA; COX MODEL; REGRESSION; ABUNDANCE;
D O I
10.1016/j.jmva.2010.05.003
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
For nonnegative measurements such as income or sick days, zero counts often have special status. Furthermore, the incidence of zero counts is often greater than expected for the Poisson model. This article considers a doubly semiparametric zero-inflated Poisson model to fit data of this type, which assumes two partially linear link functions in both the mean of the Poisson component and the probability of zero. We study a sieve maximum likelihood estimator for both the regression parameters and the nonparametric functions. We show, under routine conditions, that the estimators are strongly consistent. Moreover, the parameter estimators are asymptotically normal and first order efficient, while the nonparametric components achieve the optimal convergence rates. Simulation studies suggest that the extra flexibility inherent from the doubly semiparametric model is gained with little loss in statistical efficiency. We also illustrate our approach with a dataset from a public health study. (c) 2010 Elsevier Inc. All rights reserved.
引用
收藏
页码:2026 / 2038
页数:13
相关论文
共 50 条
  • [31] Score tests for zero-inflated double poisson regression models
    Feng-chang Xie
    Jin-guan Lin
    Bo-cheng Wei
    [J]. Acta Mathematicae Applicatae Sinica, English Series, 2017, 33 : 851 - 864
  • [32] Score Tests for Zero-inflated Double Poisson Regression Models
    Xie, Feng-chang
    Lin, Jin-guan
    Wei, Bo-cheng
    [J]. ACTA MATHEMATICAE APPLICATAE SINICA-ENGLISH SERIES, 2017, 33 (04): : 851 - 864
  • [33] Semiparametric analysis of zero-inflated count data
    Lam, K. F.
    Xue, Hongqi
    Cheung, Yin Bun
    [J]. BIOMETRICS, 2006, 62 (04) : 996 - 1003
  • [34] Frequentist model averaging for zero-inflated Poisson regression models
    Zhou, Jianhong
    Wan, Alan T. K.
    Yu, Dalei
    [J]. STATISTICAL ANALYSIS AND DATA MINING, 2022, 15 (06) : 679 - 691
  • [35] The analysis of zero-inflated count data: Beyond zero-inflated Poisson regression.
    Loeys, Tom
    Moerkerke, Beatrijs
    De Smet, Olivia
    Buysse, Ann
    [J]. BRITISH JOURNAL OF MATHEMATICAL & STATISTICAL PSYCHOLOGY, 2012, 65 (01): : 163 - 180
  • [36] Power and sample size calculations for Poisson and zero-inflated Poisson regression models
    Channouf, Nabil
    Fredette, Marc
    MacGibbon, Brenda
    [J]. COMPUTATIONAL STATISTICS & DATA ANALYSIS, 2014, 72 : 241 - 251
  • [37] Sample size calculations for hierarchical Poisson and zero-inflated Poisson regression models
    Channouf, Nabil
    Fredette, Marc
    MacGibbon, Brenda
    [J]. COMMUNICATIONS IN STATISTICS-SIMULATION AND COMPUTATION, 2021, 50 (04) : 1145 - 1164
  • [38] Semiparametric zero-inflated Bernoulli regression with applications
    Li, Chin-Shang
    Lu, Minggen
    [J]. JOURNAL OF APPLIED STATISTICS, 2022, 49 (11) : 2845 - 2869
  • [39] Estimation of mediation effects for zero-inflated regression models
    Wang, Wei
    Albert, Jeffrey M.
    [J]. STATISTICS IN MEDICINE, 2012, 31 (26) : 3118 - 3132
  • [40] Estimation and selection for spatial zero-inflated count models
    Shen, Chung-Wei
    Chen, Chun-Shu
    [J]. ENVIRONMETRICS, 2024, 35 (04)