A synchronous π-calculus

被引:3
|
作者
Amadio, Roberto M. [1 ]
机构
[1] Univ Paris 07, UMR 7126, CNRS, PPS, F-75221 Paris 05, France
关键词
D O I
10.1016/j.ic.2007.02.002
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
The SL synchronous programming model is a relaxation of the ESTEREL. synchronous model where the reaction to the absence of a signal within an instant can only happen at the next instant. In previous work, we have revisited the SL synchronous programming model. In particular, we have discussed an alternative design of the model, introduced a CPS translation to a tail recursive form, and proposed a notion of bisimulation equivalence. In the present work, we extend the tail recursive model with first-order data types obtaining a non-deterministic synchronous model whose complexity is comparable to the one of the pi-calculus. We show that our approach to bisimulation equivalence can cope with this extension and in particular that labelled bisimulation can be characterised as a contextual bisimulation. (c) 2007 Elsevier Inc. All rights reserved.
引用
收藏
页码:1470 / 1490
页数:21
相关论文
共 50 条
  • [41] Calculus
    Lord, Nick
    MATHEMATICAL GAZETTE, 2024, 108 (573): : 564 - 565
  • [42] THE 'CALCULUS'
    BOVEY, J
    LITERARY REVIEW, 1987, 30 (04) : 577 - 587
  • [43] Calculus
    Ficken, F. A.
    SCIENTIFIC MONTHLY, 1953, 77 : 272 - 273
  • [44] Probability theory: Probability calculus or uncertainty calculus
    Anevlavis, E.
    ARCHIVES OF HELLENIC MEDICINE, 2005, 22 (02): : 134 - 145
  • [45] Ito calculus and quantum white noise calculus
    Accardi, Luigi
    Boukas, Andreas
    STOCHASTIC ANALYSIS AND APPLICATIONS, 2007, 2 : 7 - +
  • [46] A calculus for cryptographic communication protocols - The CCP calculus
    Fang, Luming
    Wang, Hangjun
    2006 INTERNATIONAL CONFERENCE ON COMMUNICATIONS, CIRCUITS AND SYSTEMS PROCEEDINGS, VOLS 1-4: VOL 1: SIGNAL PROCESSING, 2006, : 1651 - +
  • [47] The origin and formation of salivary calculus (dental calculus)
    Hulin, C
    COMPTES RENDUS DES SEANCES DE LA SOCIETE DE BIOLOGIE ET DE SES FILIALES, 1928, 98 : 185 - 186
  • [48] Alias calculus, change calculus and frame inference
    Kogtenkov, Alexander
    Meyer, Bertrand
    Velder, Sergey
    SCIENCE OF COMPUTER PROGRAMMING, 2015, 97 : 163 - 172
  • [49] Possibilistic calculus as a conservative counterpart to probabilistic calculus
    Hose, Dominik
    Hanss, Michael
    MECHANICAL SYSTEMS AND SIGNAL PROCESSING, 2019, 133