Latent class based multiple imputation approach for missing categorical data

被引:28
|
作者
Gebregziabher, Mulugeta [1 ]
DeSantis, Stacia M. [1 ]
机构
[1] Med Univ S Carolina, Dept Med, Div Biostat & Epidemiol, Charleston, SC 29425 USA
关键词
Bias; Case-control data; Latent class; Missing data; Multiple imputation;
D O I
10.1016/j.jspi.2010.04.020
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
In this paper we propose a latent class based multiple imputation approach for analyzing missing categorical covariate data in a highly stratified data model. In this approach, we impute the missing data assuming a latent class imputation model and we use likelihood methods to analyze the imputed data. Via extensive simulations, we study its statistical properties and make comparisons with complete case analysis, multiple imputation, saturated log-linear multiple imputation and the Expectation-Maximization approach under seven missing data mechanisms (including missing completely at random, missing at random and not missing at random). These methods are compared with respect to bias, asymptotic standard error, type I error, and 95% coverage probabilities of parameter estimates. Simulations show that, under many missingness scenarios, latent class multiple imputation performs favorably when jointly considering these criteria. A data example from a matched case-control study of the association between multiple myeloma and polymorphisms of the Inter-Leukin 6 genes is considered. (C) 2010 Elsevier B.V. All rights reserved.
引用
收藏
页码:3252 / 3262
页数:11
相关论文
共 50 条
  • [1] A nonparametric multiple imputation approach for missing categorical data
    Zhou, Muhan
    He, Yulei
    Yu, Mandi
    Hsu, Chiu-Hsieh
    [J]. BMC MEDICAL RESEARCH METHODOLOGY, 2017, 17
  • [2] A nonparametric multiple imputation approach for missing categorical data
    Muhan Zhou
    Yulei He
    Mandi Yu
    Chiu-Hsieh Hsu
    [J]. BMC Medical Research Methodology, 17
  • [3] Bayesian Latent Class Models for the Multiple Imputation of Categorical Data
    Vidotto, Davide
    Vermunt, Jeroen K.
    Van Deun, Katrijn
    [J]. METHODOLOGY-EUROPEAN JOURNAL OF RESEARCH METHODS FOR THE BEHAVIORAL AND SOCIAL SCIENCES, 2018, 14 (02) : 56 - 68
  • [4] Missing Categorical Data Imputation Approach Based on Similarity
    Wu, Sen
    Feng, Xiaodong
    Han, Yushan
    Wang, Qiang
    [J]. PROCEEDINGS 2012 IEEE INTERNATIONAL CONFERENCE ON SYSTEMS, MAN, AND CYBERNETICS (SMC), 2012, : 2827 - 2832
  • [5] MULTIPLE IMPUTATION OF INCOMPLETE CATEGORICAL DATA USING LATENT CLASS ANALYSIS
    Vermunt, Jeroen K.
    van Ginkel, Joost R.
    van der Ark, L. Andries
    Sijtsma, Klaas
    [J]. SOCIOLOGICAL METHODOLOGY, VOL 38, 2008, 38 : 369 - 397
  • [6] Bayesian Multilevel Latent Class Models for the Multiple Imputation of Nested Categorical Data
    Vidotto, Davide
    Vermunt, Jeroen K.
    van Deun, Katrijn
    [J]. JOURNAL OF EDUCATIONAL AND BEHAVIORAL STATISTICS, 2018, 43 (05) : 511 - 539
  • [7] Categorical missing data imputation approach via sparse representation
    Shao, Xiaochen
    Wu, Sen
    Feng, Xiaodong
    Song, Rui
    [J]. INTERNATIONAL JOURNAL OF SERVICES TECHNOLOGY AND MANAGEMENT, 2016, 22 (3-5) : 256 - 270
  • [8] Multiple imputation of unordered categorical missing data: A comparison of the multivariate normal imputation and multiple imputation by chained equations
    Karangwa, Innocent
    Kotze, Danelle
    Blignaut, Renette
    [J]. BRAZILIAN JOURNAL OF PROBABILITY AND STATISTICS, 2016, 30 (04) : 521 - 539
  • [9] Machine Learning Based Missing Data Imputation in Categorical Datasets
    Ishaq, Muhammad
    Zahir, Sana
    Iftikhar, Laila
    Bulbul, Mohammad Farhad
    Rho, Seungmin
    Lee, Mi Young
    [J]. IEEE ACCESS, 2024, 12 : 88332 - 88344
  • [10] Multiple imputation: a mature approach to dealing with missing data
    Chevret, S.
    Seaman, S.
    Resche-Rigon, M.
    [J]. INTENSIVE CARE MEDICINE, 2015, 41 (02) : 348 - 350