Data-driven Modeling and Predictive Control of Maximum Pressure Rise Rate in RCCI Engines

被引:0
|
作者
Basina, L. N. Aditya [1 ]
Irdmousa, Behrouz K. [1 ]
Velni, Javad Mohammadpour [2 ]
Borhan, Hoseinali [3 ]
Naber, Jeffrey D. [1 ]
Shahbakhti, Mahdi [4 ]
机构
[1] Michigan Technol Univ, Dept Mech Engn Engn Mech, Houghton, MI 49931 USA
[2] Univ Georgia, Sch Elect & Comp Engn, Athens, GA 30602 USA
[3] Cummins Inc, Columbus, IN USA
[4] Univ Alberta, Dept Mech Engn, Edmonton, AB, Canada
基金
美国国家科学基金会;
关键词
D O I
10.1109/ccta41146.2020.9206358
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Reactivity controlled compression ignition (RCCI) is a promising low temperature combustion (LTC) regime that offers lower nitrogen oxides (NOx), soot and particulate matter (PM) emissions along with higher combustion efficiency compared to conventional diesel engines. It is critical to control maximum pressure rise rate (MPRR) in RCCI engines in order to safely and efficiently operate at varying engine loads. In this paper, a data-driven modeling (DDM) approach using support vector machines (SVM) is adapted to develop a linear parameter-varying (LPV) representation of MPRR for RCCI combustion. This LPV representation is then used in the design of a model predictive controller (MPC) to control crank angle of 50% of fuel mass fraction burn (CA50) and indicated mean effective pressure (IMEP) while limiting the MPRR. The results show that the LPV-MPC control strategy can track CA50 and IMEP with mean tracking errors of 0.9 CAD and 4.7 kPa, respectively, while limiting the MPRR to the maximum allowable value of 5.8 bar/CAD.
引用
收藏
页码:94 / 99
页数:6
相关论文
共 50 条
  • [11] Data-driven predictive modeling of Hubble parameter
    Salti, Mehmet
    Ciger, Emel
    Kangal, Evrim Ersin
    Zengin, Bilgin
    [J]. PHYSICA SCRIPTA, 2022, 97 (08)
  • [12] Data-driven predictive modeling of FeCrAl oxidation
    Roy, Indranil
    Roychowdhury, Subhrajit
    Feng, Bojun
    Ravi, Sandipp Krishnan
    Ghosh, Sayan
    Umretiya, Rajnikant
    Rebak, Raul B.
    Ruscitto, Daniel M.
    Gupta, Vipul
    Hoffman, Andrew
    [J]. MATERIALS LETTERS-X, 2023, 17
  • [13] Data-driven predictive control for networked control systems
    Xia, Yuanqing
    Xie, Wen
    Liu, Bo
    Wang, Xiaoyun
    [J]. INFORMATION SCIENCES, 2013, 235 : 45 - 54
  • [14] Data-Driven Predictive Control for Autonomous Systems
    Rosolia, Ugo
    Zhang, Xiaojing
    Borrelli, Francesco
    [J]. ANNUAL REVIEW OF CONTROL, ROBOTICS, AND AUTONOMOUS SYSTEMS, VOL 1, 2018, 1 : 259 - 286
  • [15] On the impact of regularization in data-driven predictive control
    Breschi, Valentina
    Chiuso, Alessandro
    Fabris, Marco
    Formentin, Simone
    [J]. 2023 62ND IEEE CONFERENCE ON DECISION AND CONTROL, CDC, 2023, : 3061 - 3066
  • [16] Data-driven Predictive Connected Cruise Control
    Shen, Minghao
    Orosz, Gabor
    [J]. 2023 IEEE INTELLIGENT VEHICLES SYMPOSIUM, IV, 2023,
  • [17] Data-driven modeling and control of droughts
    Zaniolo, Marta
    Giuliani, Matteo
    Castelletti, Andrea
    [J]. IFAC PAPERSONLINE, 2019, 52 (23): : 54 - 60
  • [18] Iterative Learning Model Predictive Control Based on Iterative Data-Driven Modeling
    Ma, Lele
    Liu, Xiangjie
    Kong, Xiaobing
    Lee, Kwang Y.
    [J]. IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS, 2021, 32 (08) : 3377 - 3390
  • [19] Towards data-driven stochastic predictive control
    Pan, Guanru
    Ou, Ruchuan
    Faulwasser, Timm
    [J]. INTERNATIONAL JOURNAL OF ROBUST AND NONLINEAR CONTROL, 2023,
  • [20] Towards data-driven stochastic predictive control
    Institute of Energy Systems, Energy Efficiency and Energy Economics, TU Dortmund, Dortmund, Germany
    [J]. Int J Robust Nonlinear Control,