Data-driven Modeling and Predictive Control of Maximum Pressure Rise Rate in RCCI Engines

被引:0
|
作者
Basina, L. N. Aditya [1 ]
Irdmousa, Behrouz K. [1 ]
Velni, Javad Mohammadpour [2 ]
Borhan, Hoseinali [3 ]
Naber, Jeffrey D. [1 ]
Shahbakhti, Mahdi [4 ]
机构
[1] Michigan Technol Univ, Dept Mech Engn Engn Mech, Houghton, MI 49931 USA
[2] Univ Georgia, Sch Elect & Comp Engn, Athens, GA 30602 USA
[3] Cummins Inc, Columbus, IN USA
[4] Univ Alberta, Dept Mech Engn, Edmonton, AB, Canada
基金
美国国家科学基金会;
关键词
D O I
10.1109/ccta41146.2020.9206358
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Reactivity controlled compression ignition (RCCI) is a promising low temperature combustion (LTC) regime that offers lower nitrogen oxides (NOx), soot and particulate matter (PM) emissions along with higher combustion efficiency compared to conventional diesel engines. It is critical to control maximum pressure rise rate (MPRR) in RCCI engines in order to safely and efficiently operate at varying engine loads. In this paper, a data-driven modeling (DDM) approach using support vector machines (SVM) is adapted to develop a linear parameter-varying (LPV) representation of MPRR for RCCI combustion. This LPV representation is then used in the design of a model predictive controller (MPC) to control crank angle of 50% of fuel mass fraction burn (CA50) and indicated mean effective pressure (IMEP) while limiting the MPRR. The results show that the LPV-MPC control strategy can track CA50 and IMEP with mean tracking errors of 0.9 CAD and 4.7 kPa, respectively, while limiting the MPRR to the maximum allowable value of 5.8 bar/CAD.
引用
收藏
页码:94 / 99
页数:6
相关论文
共 50 条
  • [1] Data-driven Modeling and Predictive Control of Combustion Phasing for RCCI Engines
    Irdmousa, B. K.
    Rizvi, Syed Z.
    Velni, J. Mohammadpour
    Naber, J. D.
    Shahbakhti, M.
    [J]. 2019 AMERICAN CONTROL CONFERENCE (ACC), 2019, : 1617 - 1622
  • [2] Control-Oriented Data-Driven and Physics-Based Modeling of Maximum Pressure Rise Rate in Reactivity Controlled Compression Ignition Engines
    Irdmousa, Behrouz Khoshbakht
    Basina, L. N. Aditya
    Naber, Jeffrey
    Velni, Javad Mohammadpour
    Borhan, Hoseinali
    Shahbakhti, Mahdi
    [J]. SAE INTERNATIONAL JOURNAL OF ENGINES, 2023, 16 (06) : 711 - 722
  • [3] Data-Driven Model Learning and Control of RCCI Engines based on Heat Release Rate
    Sitaraman, Radhika
    Batool, Sadaf
    Borhan, Hoseinali
    Velni, Javad Mohammadpour
    Naber, Jeffrey D.
    Shahbakhti, Mahdi
    [J]. IFAC PAPERSONLINE, 2022, 55 (37): : 608 - 614
  • [4] Input-output Data-driven Modeling and MIMO Predictive Control of an RCCI Engine Combustion
    Irdmousa, Behrouz Khoshbakht
    Naber, Jeffrey Donald
    Velni, Javad Mohammadpour
    Borhan, Hoseinali
    Shahbakhti, Mahdi
    [J]. IFAC PAPERSONLINE, 2021, 54 (20): : 406 - 411
  • [5] Maximum Likelihood Estimation in Data-Driven Modeling and Control
    Yin, Mingzhou
    Iannelli, Andrea
    Smith, Roy S. S.
    [J]. IEEE TRANSACTIONS ON AUTOMATIC CONTROL, 2023, 68 (01) : 317 - 328
  • [6] Data-driven Switched Affine Modeling for Model Predictive Control
    Smarra, Francesco
    Jain, Achin
    Mangharam, Rahul
    D'Innocenzo, Alessandro
    [J]. IFAC PAPERSONLINE, 2018, 51 (16): : 199 - 204
  • [7] CFD-based Data-driven Modeling of Reactivity and Stratification Dynamics for RCCI Engine Control
    Irdmousa, Behrouz Khoshbakht
    Naber, Jeffrey Donald
    Shahbakhti, Mahdi
    [J]. IFAC PAPERSONLINE, 2023, 56 (02): : 8272 - 8277
  • [8] A Data-Driven Subspace Design for Dual-Rate Predictive Control
    Liu, X. -M.
    Li, S. -T.
    Zhang, K. -J.
    [J]. 2014 11TH WORLD CONGRESS ON INTELLIGENT CONTROL AND AUTOMATION (WCICA), 2014, : 3787 - 3791
  • [9] Data-Driven Modeling and Distributed Predictive Control of Mixed Vehicle Platoons
    Zhan, Jingyuan
    Ma, Zibo
    Zhang, Liguo
    [J]. IEEE TRANSACTIONS ON INTELLIGENT VEHICLES, 2023, 8 (01): : 572 - 582
  • [10] Data-Driven Modeling and Predictive Control for Boiler-Turbine Unit
    Wu, Xiao
    Shen, Jiong
    Li, Yiguo
    Lee, Kwang Y.
    [J]. IEEE TRANSACTIONS ON ENERGY CONVERSION, 2013, 28 (03) : 470 - 481