Review of Deep Learning Methods for Automated Sleep Staging

被引:9
|
作者
Malekzadeh, Masoud [1 ]
Hajibabaee, Parisa [1 ]
Heidari, Maryam [2 ]
Berlin, Brett [2 ]
机构
[1] Univ Massachusetts, Lowell, MA 01854 USA
[2] George Mason Univ, Fairfax, VA 22030 USA
关键词
Automated sleep staging; deep learning; transformer; convolutional layer; RESEARCH RESOURCE; COMPONENTS; AASM;
D O I
10.1109/CCWC54503.2022.9720875
中图分类号
TP31 [计算机软件];
学科分类号
081202 ; 0835 ;
摘要
In order to diagnose sleep problems, it is critical to correctly identify sleep stages which is a labor-intensive task. Due to rising data volumes, advanced algorithms, and improvements in computational power and storage, artificial intelligence has been more popular in recent years. Automated sleep staging through cardiac rhythm is one of the active research areas that has gained attention over the last decade. In this study, we review four recent state-of-the-art deep learning methods for automated sleep staging, datasets developed in recent years, and discuss their performance evaluations.
引用
收藏
页码:80 / 86
页数:7
相关论文
共 50 条
  • [31] Deep Staging: An Interpretable Deep Learning Framework for Disease Staging
    Yao, Liuyi
    Yao, Zijun
    Hu, Jianying
    Gao, Jing
    Sun, Zhaonan
    2021 IEEE 9TH INTERNATIONAL CONFERENCE ON HEALTHCARE INFORMATICS (ICHI 2021), 2021, : 130 - 137
  • [32] Large-Scale Automated Sleep Staging
    Sun, Haoqi
    Jia, Jian
    Goparaju, Balaji
    Huang, Guang-Bin
    Sourina, Olga
    Bianchi, Matt Travis
    Westover, M. Brandon
    SLEEP, 2017, 40 (10)
  • [33] Automated sleep staging in rat with a standard spreadsheet
    Costa-Miserachs, D
    Portell-Cortés, I
    Torras-Garcia, M
    Morgado-Bernal, I
    JOURNAL OF NEUROSCIENCE METHODS, 2003, 130 (01) : 93 - 101
  • [34] Deep learning for automated segmentation in radiotherapy: a narrative review
    Bibault, Jean-Emmanuel
    Giraud, Paul
    BRITISH JOURNAL OF RADIOLOGY, 2024, 97 (1153): : 13 - 20
  • [35] A Unified Review of Deep Learning for Automated Medical Coding
    Ji, Shaoxiong
    Li, Xiaobo
    Sun, Wei
    Dong, Hang
    Taalas, Ara
    Zhang, Yijia
    Wu, Honghan
    Pitkänen, Esa
    Marttinen, Pekka
    ACM Computing Surveys, 2024, 56 (12)
  • [36] Deep learning enables sleep staging from photoplethysmogram in a clinical population with obstructive sleep apnea suspicion
    Korkalainen, H.
    Aakko, J.
    Duce, B.
    Kainulainen, S.
    Leino, A.
    Nikkonen, S.
    Afara, I. O.
    Myllymaa, S.
    Toyras, J.
    JOURNAL OF SLEEP RESEARCH, 2020, 29 : 97 - 97
  • [37] Accurate Deep Learning-Based Sleep Staging in a Clinical Population With Suspected Obstructive Sleep Apnea
    Korkalainen, Henri
    Aakko, Juhani
    Nikkonen, Sami
    Kainulainen, Samu
    Leino, Akseli
    Duce, Brett
    Afara, Isaac O.
    Myllymaa, Sami
    Toyras, Juha
    Leppanen, Timo
    IEEE JOURNAL OF BIOMEDICAL AND HEALTH INFORMATICS, 2020, 24 (07) : 2073 - 2081
  • [38] Accurate and Interpretable Deep Learning Model for Sleep Staging in Children with Sleep Apnea from Pulse Oximetry
    Vaquerizo-Villar, Fernando
    Alvarez, Daniel
    Gutierrez-Tobal, Gonzalo C.
    Martin-Montero, Adrian
    Gozal, David
    Tamayo, Eduardo
    Hornero, Roberto
    9TH EUROPEAN MEDICAL AND BIOLOGICAL ENGINEERING CONFERENCE, VOL 1, EMBEC 2024, 2024, 112 : 38 - 47
  • [39] DeepSleep 2.0: Automated Sleep Arousal Segmentation via Deep Learning
    Fonod, Robert
    AI, 2022, 3 (01) : 164 - 179
  • [40] Automated scoring of pre-REM sleep in mice with deep learning
    Niklas Grieger
    Justus T. C. Schwabedal
    Stefanie Wendel
    Yvonne Ritze
    Stephan Bialonski
    Scientific Reports, 11