Erdos and Renyi conjecture

被引:19
|
作者
Shelah, S [1 ]
机构
[1] Hebrew Univ Jerusalem, Inst Math, IL-91904 Jerusalem, Israel
[2] Rutgers State Univ, Dept Math, New Brunswick, NJ 08903 USA
基金
美国国家科学基金会;
关键词
D O I
10.1006/jcta.1997.2845
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Affirming a conjecture of Erdos and Renyi we prove that for any (real number) c(1) > 0 for some c(2) > 0, if a graph G has no c(1) (log n) nodes on which the graph is complete or edgeless (i.e., G exemplifies \G\ negated right arrow (c(1) log n)(2)(2)), then G has at least 2(c2n)non-isomorphic (induced) subgraphs. (C) 1998 Academic Press.
引用
收藏
页码:179 / 185
页数:7
相关论文
共 50 条
  • [1] ON A CONJECTURE OF ERDOS AND RENYI
    MIECH, RJ
    ILLINOIS JOURNAL OF MATHEMATICS, 1967, 11 (01) : 114 - &
  • [2] CONJECTURE OF ERDOS AND RENYI
    KIM, KH
    ROUSH, FW
    LINEAR ALGEBRA AND ITS APPLICATIONS, 1979, 23 (FEB) : 179 - 189
  • [3] CONJECTURE OF ERDOS AND RENYI CONCERNING ABELIAN-GROUPS
    HALL, RR
    SUDBERY, A
    JOURNAL OF THE LONDON MATHEMATICAL SOCIETY-SECOND SERIES, 1972, 6 (DEC): : 177 - 189
  • [4] Algebraic equations with lacunary polynomials and the Erdos-Renyi conjecture
    Mantova, Vincenzo
    RIVISTA DI MATEMATICA DELLA UNIVERSITA DI PARMA, 2016, 7 (01): : 239 - 246
  • [5] A conjecture of Erdos
    Faudree, R
    AMERICAN MATHEMATICAL MONTHLY, 1998, 105 (05): : 451 - 453
  • [6] ON A CONJECTURE OF ERDOS
    Felix, Adam Tyler
    Murty, M. Ram
    MATHEMATIKA, 2012, 58 (02) : 275 - 289
  • [7] On a conjecture of Erdos
    Pilehrood, T. Hessami
    Pilehrood, K. Hessami
    MATHEMATICAL NOTES, 2008, 83 (1-2) : 281 - 284
  • [8] On a conjecture of Erdos
    Chen, Yong-Gao
    Ding, Yuchen
    COMPTES RENDUS MATHEMATIQUE, 2022, 360 (01) : 971 - 974
  • [9] GENERALIZATION OF A RESULT OF ERDOS AND RENYI
    KAPLAN, N
    JOURNAL OF APPLIED PROBABILITY, 1977, 14 (01) : 212 - 216
  • [10] ERDOS-RENYI LAWS
    CSORGO, S
    ANNALS OF STATISTICS, 1979, 7 (04): : 772 - 787