Toward High Temperature Sodium Metal Batteries via Regulating the Electrolyte/ Electrode Interfacial Chemistries

被引:71
|
作者
Zheng, Xueying [1 ]
Cao, Zhang [2 ,3 ]
Gu, Zhenyi [4 ]
Huang, Liqiang [1 ]
Sun, Zhonghui [5 ]
Zhao, Tong [1 ]
Yu, Sijie [1 ]
Wu, Xing-Long [4 ]
Luo, Wei [1 ]
Huang, Yunhui [6 ]
机构
[1] Tongji Univ, Inst New Energy Vehicles, Shanghai Key Lab Dev & Applicat Metall Funct Mat, Sch Mat Sci & Engn, Shanghai 201804, Peoples R China
[2] Soochow Univ, Coll Energy, Suzhou 215006, Jiangsu, Peoples R China
[3] Soochow Univ, Collaborat Innovat Ctr Suzhou Nano Sci & Technol, Suzhou 215006, Jiangsu, Peoples R China
[4] Northeast Normal Univ, Minist Educ, Key Lab UV Light Emitting Mat & Technol, Changchun 130024, Jilin, Peoples R China
[5] Guangzhou Univ, Sch Chem & Chem Engn, Guangzhou 510006, Guangdong, Peoples R China
[6] Huazhong Univ Sci & Technol, State Key Lab Mat Proc & Die & Mould Technol, Sch Mat Sci & Engn, Wuhan 430074, Hubei, Peoples R China
来源
ACS ENERGY LETTERS | 2022年 / 7卷 / 06期
基金
中国国家自然科学基金;
关键词
LI-ION; FLUORINATED ELECTROLYTES; LITHIUM; BEHAVIOR; INTERPHASES; EFFICIENCY; ANODES; LAYER; SAFE; PERFORMANCE;
D O I
10.1021/acsenergylett.2c01100
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Rechargeable batteries based on sodium metal anodes (SMAs) are endowed with much higher energy density than traditional sodium-ion batteries. However, the use of SMAs brings intrinsic challenges of dendrite growth and situation can be further exacerbated at high temperature (>55 degrees C, HT). Here, we resolve such "HT-challenge" by formulating a thermally stable sulfolane (SL)-based electrolyte that regulates the electrode/electrolyte interfacial chemistries. Besides rapid Na anode passivation enabled by fluoroethylene carbonate (FEC) molecules, a nitrile-based 1,3,6-hexanetricarbonitrile (HTCN) cosolvent is simultaneously introduced, whose three electron-rich -C equivalent to N groups interact with the electropositive metal ions of Na3V2(PO4)2O2F, shielding away solvent attacks occurring at the cathode interface. As a result, we realize a high capacity retention (91.7% after 500 cycles at 1 C) for the Na/Na3V2(PO4)2O2F cell at 60 degrees C, with a high average carbon equivalent (CE) of similar to 99.6%. Even at 80 degrees C, the cell still delivers similar to 89.1% of its initial capacity after 100 cycles, whereas the control sample fails rapidly within 30 cycles.
引用
收藏
页码:2032 / 2042
页数:11
相关论文
共 50 条
  • [21] Regulating the weak solvation structure in electrolyte for high-rate Li-metal batteries at low temperature
    Yu, Hao
    Wang, Weihao
    Zhang, Youquan
    Chen, Yuejiao
    Chen, Libao
    Zhou, Liangjun
    Wei, Weifeng
    JOURNAL OF MATERIALS CHEMISTRY A, 2023, 11 (40) : 21610 - 21618
  • [22] Rational Molecular Engineering via Electron Reconfiguration toward Robust Dual-Electrode/Electrolyte Interphases for High-Performance Lithium Metal Batteries
    Zhang, Yiming
    Cao, Yu
    Zhang, Baoshan
    Gong, Haochen
    Zhang, Shaojie
    Wang, Xiaoyi
    Han, Xinpeng
    Liu, Shuo
    Yang, Ming
    Yang, Wensheng
    Sun, Jie
    ACS NANO, 2024, 18 (22) : 14764 - 14778
  • [23] Solid-Electrolyte Interphase Chemistries Towards High-Performance Aqueous Zinc Metal Batteries
    Zhang, Wei
    He, Guanjie
    ANGEWANDTE CHEMIE-INTERNATIONAL EDITION, 2023, 62 (13)
  • [24] Coordinated Na+ Diffusion and Multiscale Interfacial Engineering of Polymer Electrolyte for Room-Temperature Solid Sodium Metal Batteries
    Guo, Yuxiang
    Liu, Jiacheng
    Shao, Ahu
    Cheng, Lu
    Tang, Jiawen
    Zhang, Yaxin
    Wang, Zhiqiao
    Li, Yunsong
    Wang, Yingche
    Wang, Helin
    Li, Chunwei
    Liu, Ting
    Zhao, Xiaodong
    Ma, Yue
    ADVANCED ENERGY MATERIALS, 2024,
  • [25] Toward new proton exchange batteries based on ionic liquid electrolyte: Metal hydride electrode / electrolyte coupling
    Chaabene, N.
    Zhang, J.
    Turmine, M.
    Kurchavova, E.
    Vivier, V.
    Cuevas, F.
    Mateos, M.
    Latroche, M.
    Monnier, J.
    JOURNAL OF POWER SOURCES, 2023, 574
  • [26] Toward Critical Electrode/Electrolyte Interfaces in Rechargeable Batteries
    Yan, Chong
    Xu, Rui
    Xiao, Ye
    Ding, Jun-Fan
    Xu, Lei
    Li, Bo-Quan
    Huang, Jia-Qi
    ADVANCED FUNCTIONAL MATERIALS, 2020, 30 (23)
  • [27] Enhancing Interfacial Strength and Wettability for Wide-Temperature Sodium Metal Batteries
    Xia, Xianming
    Yang, Yi
    Chen, Kaizhi
    Xu, Shitan
    Tang, Fang
    Liu, Lin
    Xu, Chen
    Rui, Xianhong
    SMALL, 2023, 19 (33)
  • [28] DEVELOPMENT OF NASICON, A SOLID ELECTROLYTE FOR HIGH-TEMPERATURE SODIUM BATTERIES
    KAFALAS, JA
    ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY, 1978, 176 (SEP): : 99 - 99
  • [29] Regulating interfacial reactions through electrolyte chemistry enables an anion-rich interphase for wide-temperature zinc metal batteries
    Chen, Yimei
    Zhang, Kaijie
    Xu, Zhixiao
    Gong, Facheng
    Feng, Renfei
    Jin, Zhehui
    Wang, Xiaolei
    ENERGY & ENVIRONMENTAL SCIENCE, 2025, 18 (02) : 713 - 727
  • [30] Highly Safe Electrolyte for Fast-Charging, High-Temperature, High-Voltage Sodium Metal Batteries
    Wu, Daxiong
    Wang, Huaping
    Zhu, Chunlei
    Wang, Chuan
    Li, Xiu
    Ma, Jianmin
    ADVANCED FUNCTIONAL MATERIALS, 2025,