Development of efficient and accurate machine-learning potentials for the simulation of complex catalyst materials

被引:0
|
作者
Artrith, Nongnuch [1 ]
机构
[1] Univ Calif Berkeley, Mat Sci & Engn, Berkeley, CA 94720 USA
关键词
NEURAL-NETWORK POTENTIALS;
D O I
暂无
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
68
引用
收藏
页数:2
相关论文
共 50 条
  • [1] Simulating complex inorganic materials for energy applications with machine-learning potentials
    Artrith, Nongnuch
    [J]. ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY, 2019, 257
  • [3] Strategies for the construction of machine-learning potentials for accurate and efficient atomic-scale simulations
    Miksch, April M.
    Morawietz, Tobias
    Kaestner, Johannes
    Urban, Alexander
    Artrith, Nongnuch
    [J]. MACHINE LEARNING-SCIENCE AND TECHNOLOGY, 2021, 2 (03):
  • [4] Machine-learning potentials for crystal defects
    Rodrigo Freitas
    Yifan Cao
    [J]. MRS Communications, 2022, 12 : 510 - 520
  • [5] Machine-learning potentials for crystal defects
    Freitas, Rodrigo
    Cao, Yifan
    [J]. MRS COMMUNICATIONS, 2022, 12 (05) : 510 - 520
  • [6] Active learning of uniformly accurate interatomic potentials for materials simulation
    Zhang, Linfeng
    Lin, De-Ye
    Wang, Han
    Car, Roberto
    E, Weinan
    [J]. PHYSICAL REVIEW MATERIALS, 2019, 3 (02)
  • [7] Efficient and accurate machine-learning interpolation of atomic energies in compositions with many species
    Artrith, Nongnuch
    Urban, Alexander
    Ceder, Gerbrand
    [J]. PHYSICAL REVIEW B, 2017, 96 (01)
  • [8] Machine-learning strategies for the accurate and efficient analysis of x-ray spectroscopy
    Penfold, Thomas
    Watson, Luke
    Middleton, Clelia
    David, Tudur
    Verma, Sneha
    Pope, Thomas
    Kaczmarek, Julia
    Rankine, Conor
    [J]. MACHINE LEARNING-SCIENCE AND TECHNOLOGY, 2024, 5 (02):
  • [9] Exploring diffusion behavior of superionic materials using machine-learning interatomic potentials
    Hsing, Cheng-Rong
    Nguyen, Duc-Long
    Wei, Ching -Ming
    [J]. PHYSICAL REVIEW MATERIALS, 2024, 8 (04):
  • [10] Intricate short-range order in GeSn alloys revealed by atomistic simulations with highly accurate and efficient machine-learning potentials
    Chen, Shunda
    Jin, Xiaochen
    Zhao, Wanyu
    Li, Tianshu
    [J]. PHYSICAL REVIEW MATERIALS, 2024, 8 (04):