INEQUALITIES FOR SECTOR MATRICES AND POSITIVE LINEAR MAPS

被引:15
|
作者
Tan, Fuping [1 ]
Chen, Huimin [1 ]
机构
[1] Shanghai Univ, Dept Math, Shanghai 200444, Peoples R China
来源
关键词
Positive linear maps; Geometric mean; Sector matrix; Norm inequality; NORM INEQUALITIES; GAUSSIAN-ELIMINATION; GROWTH-FACTOR;
D O I
10.13001/1081-3810.4041
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Ando proved that if A, B are positive definite, then for any positive linear map phi, it holds phi(A(sic)(lambda)B) <= phi(A)(sic)(lambda)phi(B), where A(sic)(lambda)B, <= lambda <= 1, means the weighted geometric mean of A;B. Using the recently defined geometric mean for accretive matrices, Ando's result is extended to sector matrices. Some norm inequalities are considered as well.
引用
收藏
页码:418 / 423
页数:6
相关论文
共 50 条
  • [1] Mean inequalities for sector matrices involving positive linear maps
    Malekinejad, Somayeh
    Khosravi, Maryam
    Sheikhhosseini, Alemeh
    [J]. POSITIVITY, 2022, 26 (03)
  • [2] Mean inequalities for sector matrices involving positive linear maps
    Somayeh Malekinejad
    Maryam Khosravi
    Alemeh Sheikhhosseini
    [J]. Positivity, 2022, 26
  • [3] Inequalities for the Heinz mean of sector matrices involving positive linear maps
    Yang, Chaojun
    Lu, Fangyan
    [J]. ANNALS OF FUNCTIONAL ANALYSIS, 2020, 11 (03) : 866 - 878
  • [4] Inequalities for the Heinz mean of sector matrices involving positive linear maps
    Chaojun Yang
    Fangyan Lu
    [J]. Annals of Functional Analysis, 2020, 11 : 866 - 878
  • [5] Inequalities for positive linear maps on Hermitian matrices
    Micic, J
    Pecaric, J
    Seo, Y
    Tominaga, M
    [J]. MATHEMATICAL INEQUALITIES & APPLICATIONS, 2000, 3 (04): : 559 - 591
  • [6] LINEAR MAPS OF POSITIVE PARTIAL TRANSPOSE MATRICES AND SINGULAR VALUE INEQUALITIES
    Fu, Xiaohui
    Lau, Pan-Shun
    Tam, Tin-Yau
    [J]. MATHEMATICAL INEQUALITIES & APPLICATIONS, 2020, 23 (04): : 1459 - 1468
  • [7] MORE INEQUALITIES FOR POSITIVE LINEAR MAPS
    Sharma, R.
    Thakur, A.
    [J]. JOURNAL OF MATHEMATICAL INEQUALITIES, 2013, 7 (01): : 1 - 9
  • [8] A note on inequalities for positive linear maps
    Sharma, R.
    Devi, P.
    Kumari, R.
    [J]. LINEAR ALGEBRA AND ITS APPLICATIONS, 2017, 528 : 113 - 123
  • [9] Some inequalities for positive linear maps
    Bhatia, Rajendra
    Sharma, Rajesh
    [J]. LINEAR ALGEBRA AND ITS APPLICATIONS, 2012, 436 (06) : 1562 - 1571
  • [10] Positive linear maps on normal matrices
    Bourin, Jean-Christophe
    Lee, Eun-Young
    [J]. INTERNATIONAL JOURNAL OF MATHEMATICS, 2018, 29 (12)