LINEAR MAPS OF POSITIVE PARTIAL TRANSPOSE MATRICES AND SINGULAR VALUE INEQUALITIES

被引:4
|
作者
Fu, Xiaohui [1 ,2 ]
Lau, Pan-Shun [3 ]
Tam, Tin-Yau [3 ]
机构
[1] Hainan Normal Univ, Dept Math & Stat, Haikou, Hainan, Peoples R China
[2] Hainan Normal Univ, Minist Educ, Key Lab Data Sci & Intelligence Educ, Haikou, Hainan, Peoples R China
[3] Univ Nevada, Dept Math & Stat, Reno, NV 89557 USA
来源
关键词
Positive semi-definite matrices; positive partial transpose; singular values inequalities; BLOCK; SEPARABILITY;
D O I
10.7153/mia-2020-23-104
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Linear maps Phi : M-n -> M-k are called m-PPT if [Phi(A(ij))](i,j=1)(m) are positive partial transpose matrices for all positive semi-definite matrices [A(ij)](i,j=1)(m) is an element of M-m(M-n). In this paper, connections between m-PPT maps, m -positive maps and m-copositive maps are given. In consequence, characterizations of completely PPT maps are obtained. The results are applied to study two linear maps X bar right arrow X + a(trX)I and X bar right arrow a(trX)I - X for a >= 0. Moreover, singular values inequalities of 2 x 2 positive block matrices under these two linear maps are given. In particular, we prove an open singular values inequality formulated by Lin [Linear Algebra Appl, 520 (2017)] for n <= 3.
引用
收藏
页码:1459 / 1468
页数:10
相关论文
共 50 条
  • [1] Singular value inequalities on 2 x 2 block accretive partial transpose matrices
    Huang, Zhuo
    [J]. SCIENCEASIA, 2023, 49 (06): : 827 - 829
  • [2] Partial trace inequalities for partial transpose of positive semidefinite block matrices
    Yang, Junjian
    Xu, Huan
    [J]. POSITIVITY, 2024, 28 (02)
  • [3] Partial trace inequalities for partial transpose of positive semidefinite block matrices
    Junjian Yang
    Huan Xu
    [J]. Positivity, 2024, 28
  • [4] ON POSITIVE PARTIAL TRANSPOSE MATRICES
    Gumus, Mehmet
    Liu, Jianzhen
    Raouafi, Samir
    Tam, Tin-Yau
    [J]. ELECTRONIC JOURNAL OF LINEAR ALGEBRA, 2020, 36 : 256 - 264
  • [5] ON POSITIVE AND POSITIVE PARTIAL TRANSPOSE MATRICES
    Gumus, Ibrahim Halil
    Moradi, Hamid Reza
    Sababheh, Mohammad
    [J]. ELECTRONIC JOURNAL OF LINEAR ALGEBRA, 2022, 38 : 792 - 802
  • [6] SINGULAR VALUE INEQUALITIES FOR POSITIVE SEMIDEFINITE MATRICES
    Zou, L.
    Jiang, Y.
    [J]. BULLETIN OF THE IRANIAN MATHEMATICAL SOCIETY, 2014, 40 (03) : 631 - 638
  • [7] INEQUALITIES FOR SECTOR MATRICES AND POSITIVE LINEAR MAPS
    Tan, Fuping
    Chen, Huimin
    [J]. ELECTRONIC JOURNAL OF LINEAR ALGEBRA, 2019, 35 : 418 - 423
  • [8] Inequalities for positive linear maps on Hermitian matrices
    Micic, J
    Pecaric, J
    Seo, Y
    Tominaga, M
    [J]. MATHEMATICAL INEQUALITIES & APPLICATIONS, 2000, 3 (04): : 559 - 591
  • [9] Singular value and norm inequalities for positive semidefinite matrices
    Al-Natoor, Ahmad
    Kittaneh, Fuad
    [J]. LINEAR & MULTILINEAR ALGEBRA, 2022, 70 (19): : 4498 - 4507
  • [10] Some Singular Value Inequalities Related to Linear Maps
    Yang, Junjian
    Lu, Linzhang
    Chen, Zhen
    [J]. FILOMAT, 2020, 34 (11) : 3705 - 3709