Phasic dopamine release identification using convolutional neural network

被引:12
|
作者
Matsushita, Gustavo H. G. [1 ]
Sugi, Adam H. [2 ,3 ]
Costa, Yandre M. G. [4 ]
Gomez-A, Alexander [5 ]
Da Cunha, Claudio [2 ,3 ]
Oliveira, Luiz S. [1 ]
机构
[1] Univ Fed Parana, Dept Informat, Curitiba, Parana, Brazil
[2] Univ Fed Parana, Dept Biochem, Curitiba, Parana, Brazil
[3] Univ Fed Parana, Dept Pharmacol, Curitiba, Parana, Brazil
[4] Univ Estadual Maringa, Dept Informat, Maringa, PR, Brazil
[5] Univ N Carolina, Bowles Ctr Alcohol Studies, Chapel Hill, NC 27515 USA
关键词
Phasic dopamine release; Fast-scan cyclic voltammetry; Convolutional neural network; YOLO; Pattern recognition; Machine learning; TEXTURE CLASSIFICATION; NOREPINEPHRINE; SEROTONIN; BRAIN;
D O I
10.1016/j.compbiomed.2019.103466
中图分类号
Q [生物科学];
学科分类号
07 ; 0710 ; 09 ;
摘要
Dopamine has a major behavioral impact related to drug dependence, learning and memory functions, as well as pathologies such as schizophrenia and Parkinson's disease. Phasic release of dopamine can be measured in vivo with fast-scan cyclic voltammetry. However, even for a specialist, manual analysis of experiment results is a repetitive and time consuming task. This work aims to improve the automatic dopamine identification from fast-scan cyclic voltammetry data using convolutional neural networks (CNN). The best performance obtained in the experiments achieved an accuracy of 98.31% using a combined CNN approach. The end-to-end object detection system using YOLOv3 achieved an accuracy of 97.66%. Also, a new public dopamine release dataset was presented, and it is available at https://webinf.ufpr.br/vri/databases/phasicdopaminerelease/.
引用
收藏
页数:9
相关论文
共 50 条
  • [1] Identifying Phasic dopamine releases using DarkNet-19 Convolutional Neural Network
    Abu Al-Haija, Qasem
    Smadi, Mahmoud
    Al-Bataineh, Osama M.
    [J]. 2021 IEEE INTERNATIONAL IOT, ELECTRONICS AND MECHATRONICS CONFERENCE (IEMTRONICS), 2021, : 864 - 868
  • [2] Automatic Identification of Phasic Dopamine Release
    Matsushita, Gustavo H. G.
    Oliveira, Luiz E. S.
    Sugi, Adam H.
    da Cunha, Claudio
    Costa, Yandre M. G.
    [J]. 2018 25TH INTERNATIONAL CONFERENCE ON SYSTEMS, SIGNALS AND IMAGE PROCESSING (IWSSIP), 2018,
  • [3] Identification of Cattle Breed using the Convolutional Neural Network
    Manoj, Sreenand
    Rakshith, S.
    Kanchana, V
    [J]. ICSPC'21: 2021 3RD INTERNATIONAL CONFERENCE ON SIGNAL PROCESSING AND COMMUNICATION (ICPSC), 2021, : 503 - 507
  • [4] IDENTIFICATION OF DEFECTIVE CHERRIES USING CONVOLUTIONAL NEURAL NETWORK
    Kaygisiz, Halil
    Cakir, Abdulkadir
    [J]. FRESENIUS ENVIRONMENTAL BULLETIN, 2022, 31 (06): : 5492 - 5498
  • [5] Skin Identification Using Deep Convolutional Neural Network
    Oghaz, Mahdi Maktab Dar
    Argyriou, Vasileios
    Monekosso, Dorothy
    Remagnino, Paolo
    [J]. ADVANCES IN VISUAL COMPUTING, ISVC 2019, PT I, 2020, 11844 : 181 - 193
  • [6] Vortex Boundary Identification using Convolutional Neural Network
    Berenjkoub, Marzieh
    Chen, Guoning
    Gunther, Tobias
    [J]. 2020 IEEE VISUALIZATION CONFERENCE - SHORT PAPERS (VIS 2020), 2020, : 261 - 265
  • [7] Neuropsychiatric Disorders Identification Using Convolutional Neural Network
    Lin, Chih-Wei
    Ding, Qilu
    [J]. MULTIMEDIA MODELING, MMM 2019, PT II, 2019, 11296 : 315 - 327
  • [8] Identification of plant microRNAs using convolutional neural network
    Zhang, Yun
    Huang, Jianghua
    Xie, Feixiang
    Huang, Qian
    Jiao, Hongguan
    Cheng, Wenbo
    [J]. FRONTIERS IN PLANT SCIENCE, 2024, 15
  • [9] Tamil Author Identification Using Convolutional Neural Network
    Archchitha, A.
    Charles, E. Y. A.
    [J]. 2022 22ND INTERNATIONAL CONFERENCE ON ADVANCES IN ICT FOR EMERGING REGIONS (ICTER), 2022,
  • [10] Writer Identification and Retrieval Using a Convolutional Neural Network
    Fiel, Stefan
    Sablatnig, Robert
    [J]. COMPUTER ANALYSIS OF IMAGES AND PATTERNS, CAIP 2015, PT II, 2015, 9257 : 26 - 37