A priori bounds and multiplicity of solutions for an indefinite elliptic problem with critical growth in the gradient

被引:4
|
作者
De Coster, Colette [1 ]
Fernandez, Antonio J. [1 ,2 ]
Jeanjean, Louis [2 ]
机构
[1] Univ Valenciennes, EA 4015, LAMAV, FR CNRS 2956, F-59313 Valenciennes, France
[2] Univ Bourgogne Franche Comte, Lab Math, UMR 6623, 16 Route Gray, F-25030 Besancon, France
关键词
Critical growth in the gradient; A priori bound; Continuum of solutions; p-Laplacian; Boundary weak Harnack inequality; QUADRATIC GROWTH; EQUATIONS; EXISTENCE; UNIQUENESS;
D O I
10.1016/j.matpur.2019.09.011
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Let Omega subset of R-N, N >= 2, be a smooth bounded domain. We consider a boundary value problem of the form -Delta u = c(lambda)(x)u + mu(x)vertical bar del u vertical bar(2) + h(x), u is an element of H-0(1)(Omega) boolean AND L-infinity(Omega) where c(lambda) depends on a parameter lambda is an element of R, the coefficients c(lambda) and h belong to L-q (Omega) with q > N/2 and mu is an element of L-infinity(Omega). Under suitable assumptions, but without imposing a sign condition on any of these coefficients, we obtain an a priori upper bound on the solutions. Our proof relies on a new boundary weak Harnack inequality. This inequality, which is of independent interest, is established in the general framework of the p-Laplacian. With this a priori bound at hand, we show the existence and multiplicity of solutions. (C) 2019 Elsevier Masson SAS. All rights reserved.
引用
收藏
页码:308 / 333
页数:26
相关论文
共 50 条
  • [41] A priori bounds and renormalized Morse indices of solutions of an elliptic system
    Angenent, SB
    Van der Vorst, R
    ANNALES DE L INSTITUT HENRI POINCARE-ANALYSE NON LINEAIRE, 2000, 17 (03): : 277 - 306
  • [42] EXISTENCE AND MULTIPLICITY OF POSITIVE SOLUTIONS FOR INDEFINITE SEMILINEAR ELLIPTIC PROBLEMS IN RN
    Cheng, Yi-Hsin
    Wu, Tsung-Fang
    ELECTRONIC JOURNAL OF DIFFERENTIAL EQUATIONS, 2014,
  • [43] A priori bounds and existence of solutions for some nonlocal elliptic problems
    Barrios, Begona
    Del Pezzo, Leandro
    Garcia-Melian, Jorge
    Quaas, Alexander
    REVISTA MATEMATICA IBEROAMERICANA, 2018, 34 (01) : 195 - 220
  • [44] A priori bounds and existence of positive solutions for semilinear elliptic systems
    Mavinga, N.
    Pardo, R.
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2017, 449 (02) : 1172 - 1188
  • [45] A Priori Bounds and Existence of Solutions for Slightly Superlinear Elliptic Problems
    Garcia-Melian, J.
    Iturriaga, L.
    Ramos Quoirin, H.
    ADVANCED NONLINEAR STUDIES, 2015, 15 (04) : 923 - 938
  • [46] A priori bounds in Lp for solutions of elliptic equations in divergence form
    Monsurro, Sara
    Transirico, Maria
    BULLETIN DES SCIENCES MATHEMATIQUES, 2013, 137 (07): : 851 - 866
  • [47] EXISTENCE AND MULTIPLICITY OF SOLUTIONS FOR A NONVARIATIONAL ELLIPTIC PROBLEM
    CHOI, YS
    HERNANDEZ, GE
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 1994, 182 (01) : 189 - 201
  • [48] Multiplicity of solutions for quasilinear elliptic problems involving Φ-Laplacian operator and critical growth
    Li, Xuewei
    Jia, Gao
    ELECTRONIC JOURNAL OF QUALITATIVE THEORY OF DIFFERENTIAL EQUATIONS, 2019, (06) : 1 - 15
  • [49] Multibump nodal solutions for an indefinite superlinear elliptic problem
    Girao, Pedro M.
    Gomes, Jose Maria
    JOURNAL OF DIFFERENTIAL EQUATIONS, 2009, 247 (04) : 1001 - 1012
  • [50] Two solutions for a singular elliptic problem indefinite in sign
    Giovanni Anello
    Francesca Faraci
    Nonlinear Differential Equations and Applications NoDEA, 2015, 22 : 1429 - 1443